海水到可持续燃料:用原子分散的光催化剂产生阳光驱动的绿色氢。

IF 15.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Satyadeep Waiba, Manami Banerjee, Lindsey Frederiksen, Aleksander Jaworski, Susanna Monti, Giovanni Barcaro, Kaan Karaca, Xiufang He, Anna Rokicińska, Thanh Huyen Vuong, Gianvito Vilé, Piotr Kuśtrowski, Jabor Rabeah, David Reyes, Peng Ren, Sergey Bagnich, Anna Köhler, Daniel Hohenberger, Josef Breu, Paul J Dyson, Shoubhik Das
{"title":"海水到可持续燃料:用原子分散的光催化剂产生阳光驱动的绿色氢。","authors":"Satyadeep Waiba, Manami Banerjee, Lindsey Frederiksen, Aleksander Jaworski, Susanna Monti, Giovanni Barcaro, Kaan Karaca, Xiufang He, Anna Rokicińska, Thanh Huyen Vuong, Gianvito Vilé, Piotr Kuśtrowski, Jabor Rabeah, David Reyes, Peng Ren, Sergey Bagnich, Anna Köhler, Daniel Hohenberger, Josef Breu, Paul J Dyson, Shoubhik Das","doi":"10.1021/jacs.5c11004","DOIUrl":null,"url":null,"abstract":"<p><p>Green hydrogen is widely regarded as a key to a sustainable future, offering a clean and flexible fuel option for decarbonizing the energy, transport, and industrial sectors. While photocatalytic approaches are known for generating hydrogen directly from water, most existing methods require (over)stoichiometric amounts of sacrificial reagents, which is far from ideal for the production of green hydrogen. To address this challenge, we have developed an atomically dispersed Ni-based photocatalyst that achieves hydrogen evolution rates of up to 270 μmol/g/h (168 mmol/g<sub>Ni</sub>/h). Remarkably, this photocatalyst also exhibits high photoreactivity under direct sunlight, producing up to 17 μmol/g/h (10.6 mmol/g<sub>Ni</sub>/h) of hydrogen. Impressively, the catalyst can even generate green hydrogen directly from seawater, up to 144 μmol/g/h, demonstrating significant potential for real-world applications. The photocatalyst is exceptionally stable, remaining active even after 720 h (140 h of irradiation and 580 h resting time) of operation and retaining high performance over more than 15 cycles. Furthermore, comprehensive spectroscopic and structural analyses─including HRTEM, PXRD, ssNMR, XPS, and XAS─provide detailed structural insights and confirm the atomically dispersed nature of the Ni species. In-depth mechanistic studies have elucidated the critical role of atomic dispersion in enabling robust photocatalytic efficiency.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":" ","pages":""},"PeriodicalIF":15.6000,"publicationDate":"2025-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Seawater to Sustainable Fuel: Sunlight-Driven Green Hydrogen Generation with an Atomically Dispersed Photocatalyst.\",\"authors\":\"Satyadeep Waiba, Manami Banerjee, Lindsey Frederiksen, Aleksander Jaworski, Susanna Monti, Giovanni Barcaro, Kaan Karaca, Xiufang He, Anna Rokicińska, Thanh Huyen Vuong, Gianvito Vilé, Piotr Kuśtrowski, Jabor Rabeah, David Reyes, Peng Ren, Sergey Bagnich, Anna Köhler, Daniel Hohenberger, Josef Breu, Paul J Dyson, Shoubhik Das\",\"doi\":\"10.1021/jacs.5c11004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Green hydrogen is widely regarded as a key to a sustainable future, offering a clean and flexible fuel option for decarbonizing the energy, transport, and industrial sectors. While photocatalytic approaches are known for generating hydrogen directly from water, most existing methods require (over)stoichiometric amounts of sacrificial reagents, which is far from ideal for the production of green hydrogen. To address this challenge, we have developed an atomically dispersed Ni-based photocatalyst that achieves hydrogen evolution rates of up to 270 μmol/g/h (168 mmol/g<sub>Ni</sub>/h). Remarkably, this photocatalyst also exhibits high photoreactivity under direct sunlight, producing up to 17 μmol/g/h (10.6 mmol/g<sub>Ni</sub>/h) of hydrogen. Impressively, the catalyst can even generate green hydrogen directly from seawater, up to 144 μmol/g/h, demonstrating significant potential for real-world applications. The photocatalyst is exceptionally stable, remaining active even after 720 h (140 h of irradiation and 580 h resting time) of operation and retaining high performance over more than 15 cycles. Furthermore, comprehensive spectroscopic and structural analyses─including HRTEM, PXRD, ssNMR, XPS, and XAS─provide detailed structural insights and confirm the atomically dispersed nature of the Ni species. In-depth mechanistic studies have elucidated the critical role of atomic dispersion in enabling robust photocatalytic efficiency.</p>\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":15.6000,\"publicationDate\":\"2025-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/jacs.5c11004\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.5c11004","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

绿色氢被广泛认为是可持续未来的关键,为能源、交通和工业部门的脱碳提供了清洁和灵活的燃料选择。众所周知,光催化方法可以直接从水中产生氢,但大多数现有方法需要(超过)化学计量量的牺牲试剂,这远不是生产绿色氢的理想方法。为了解决这一挑战,我们开发了一种原子分散的镍基光催化剂,其析氢速率高达270 μmol/g/h (168 mmol/gNi/h)。值得注意的是,这种光催化剂在阳光直射下也表现出很高的光反应性,产生高达17 μmol/g/h (10.6 mmol/gNi/h)的氢。令人印象深刻的是,该催化剂甚至可以直接从海水中产生绿色氢,最高可达144 μmol/g/h,显示出实际应用的巨大潜力。光催化剂非常稳定,即使在720小时(140小时的照射和580小时的休息时间)的操作后仍保持活性,并且在超过15个循环的时间内保持高性能。此外,全面的光谱和结构分析──包括HRTEM、PXRD、ssNMR、XPS和XAS──提供了详细的结构见解,并确认了Ni物种的原子分散性质。深入的机理研究已经阐明了原子分散在实现强大的光催化效率中的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Seawater to Sustainable Fuel: Sunlight-Driven Green Hydrogen Generation with an Atomically Dispersed Photocatalyst.

Green hydrogen is widely regarded as a key to a sustainable future, offering a clean and flexible fuel option for decarbonizing the energy, transport, and industrial sectors. While photocatalytic approaches are known for generating hydrogen directly from water, most existing methods require (over)stoichiometric amounts of sacrificial reagents, which is far from ideal for the production of green hydrogen. To address this challenge, we have developed an atomically dispersed Ni-based photocatalyst that achieves hydrogen evolution rates of up to 270 μmol/g/h (168 mmol/gNi/h). Remarkably, this photocatalyst also exhibits high photoreactivity under direct sunlight, producing up to 17 μmol/g/h (10.6 mmol/gNi/h) of hydrogen. Impressively, the catalyst can even generate green hydrogen directly from seawater, up to 144 μmol/g/h, demonstrating significant potential for real-world applications. The photocatalyst is exceptionally stable, remaining active even after 720 h (140 h of irradiation and 580 h resting time) of operation and retaining high performance over more than 15 cycles. Furthermore, comprehensive spectroscopic and structural analyses─including HRTEM, PXRD, ssNMR, XPS, and XAS─provide detailed structural insights and confirm the atomically dispersed nature of the Ni species. In-depth mechanistic studies have elucidated the critical role of atomic dispersion in enabling robust photocatalytic efficiency.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信