在晶界处原位形成Yb2Ti2O7二次相,协同增强了BaTiO3陶瓷的抗还原性和介电稳定性

IF 6.2 2区 材料科学 Q1 MATERIALS SCIENCE, CERAMICS
Xingzhong Liu, Manting Zeng, Hua Hao, Zhonghua Yao, Hanxing Liu
{"title":"在晶界处原位形成Yb2Ti2O7二次相,协同增强了BaTiO3陶瓷的抗还原性和介电稳定性","authors":"Xingzhong Liu,&nbsp;Manting Zeng,&nbsp;Hua Hao,&nbsp;Zhonghua Yao,&nbsp;Hanxing Liu","doi":"10.1016/j.jeurceramsoc.2025.117912","DOIUrl":null,"url":null,"abstract":"<div><div>This study proposes a novel grain-boundary engineering strategy that synergistically enhances both resistance against reduction and dielectric stability in BaTiO<sub>3</sub>-based ceramics sintered under reducing atmosphere. By constructing uniform 2–3 nm Yb<sub>2</sub>O<sub>3</sub> coatings on 100 nm BaTiO<sub>3</sub> particles via chemical co-precipitation, we achieve in situ formation of Yb<sub>2</sub>Ti<sub>2</sub>O<sub>7</sub> pyrochlore phases at grain boundaries during sintering. Unlike conventional solid-state processed counterparts, the grain-boundary-confined Yb<sub>2</sub>Ti<sub>2</sub>O<sub>7</sub> phases exhibit dual functional mechanisms: Zener pinning-induced ultrafine grain refinement, and lattice mismatch-generated compressive stress that stabilizes the pseudocubic phase. These coupled effects synergistically elevate carrier migration activation energies, enabling ultrahigh resistivity (7.91 ×10<sup>10</sup> Ω·cm) and exceptional resistance against reduction. Simultaneously, the synergy between stress and the grain structure refines ferroelectric domains to the nanoscale, thereby activating strong relaxor behavior that enhances dielectric stability. Consequently, the engineered ceramic simultaneously delivers X7R-compliant thermal stability (<em>ε</em><sub><em>25℃</em></sub>=1623, tanδ =0.76 %) and minimal DC bias dependence (∆<em>εᵣ/ε</em><sub><em>0</em></sub> = 4.2 % at 0–2 V/µm).</div></div>","PeriodicalId":17408,"journal":{"name":"Journal of The European Ceramic Society","volume":"46 4","pages":"Article 117912"},"PeriodicalIF":6.2000,"publicationDate":"2025-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In situ formation of Yb2Ti2O7 secondary phase at grain boundaries for synergistically enhanced resistance against reduction and dielectric stability in BaTiO3 ceramics\",\"authors\":\"Xingzhong Liu,&nbsp;Manting Zeng,&nbsp;Hua Hao,&nbsp;Zhonghua Yao,&nbsp;Hanxing Liu\",\"doi\":\"10.1016/j.jeurceramsoc.2025.117912\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study proposes a novel grain-boundary engineering strategy that synergistically enhances both resistance against reduction and dielectric stability in BaTiO<sub>3</sub>-based ceramics sintered under reducing atmosphere. By constructing uniform 2–3 nm Yb<sub>2</sub>O<sub>3</sub> coatings on 100 nm BaTiO<sub>3</sub> particles via chemical co-precipitation, we achieve in situ formation of Yb<sub>2</sub>Ti<sub>2</sub>O<sub>7</sub> pyrochlore phases at grain boundaries during sintering. Unlike conventional solid-state processed counterparts, the grain-boundary-confined Yb<sub>2</sub>Ti<sub>2</sub>O<sub>7</sub> phases exhibit dual functional mechanisms: Zener pinning-induced ultrafine grain refinement, and lattice mismatch-generated compressive stress that stabilizes the pseudocubic phase. These coupled effects synergistically elevate carrier migration activation energies, enabling ultrahigh resistivity (7.91 ×10<sup>10</sup> Ω·cm) and exceptional resistance against reduction. Simultaneously, the synergy between stress and the grain structure refines ferroelectric domains to the nanoscale, thereby activating strong relaxor behavior that enhances dielectric stability. Consequently, the engineered ceramic simultaneously delivers X7R-compliant thermal stability (<em>ε</em><sub><em>25℃</em></sub>=1623, tanδ =0.76 %) and minimal DC bias dependence (∆<em>εᵣ/ε</em><sub><em>0</em></sub> = 4.2 % at 0–2 V/µm).</div></div>\",\"PeriodicalId\":17408,\"journal\":{\"name\":\"Journal of The European Ceramic Society\",\"volume\":\"46 4\",\"pages\":\"Article 117912\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The European Ceramic Society\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0955221925007332\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The European Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955221925007332","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种新的晶界工程策略,可以协同提高还原性气氛烧结batio3基陶瓷的抗还原性和介电稳定性。通过化学共沉淀法在100 nm的BaTiO3颗粒上构建均匀的2-3 nm的Yb2O3涂层,我们在烧结过程中在晶界处原位形成了Yb2Ti2O7烧绿石相。与传统的固态处理相不同,晶界受限的Yb2Ti2O7相具有双重功能机制:齐纳钉钉诱导的超细晶粒细化,以及晶格错配产生的稳定伪晶相的压应力。这些耦合效应协同提高了载流子迁移活化能,实现了超高电阻率(7.91 ×1010 Ω·cm)和卓越的抗还原能力。同时,应力和晶粒结构之间的协同作用将铁电畴细化到纳米尺度,从而激活强弛豫行为,增强介电稳定性。因此,工程陶瓷同时具有符合x7r的热稳定性(ε25℃=1623,tanδ =0.76 %)和最小的直流偏置依赖性(∆εᵣ/ε0 = 4.2 %,0-2 V/µm)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
In situ formation of Yb2Ti2O7 secondary phase at grain boundaries for synergistically enhanced resistance against reduction and dielectric stability in BaTiO3 ceramics
This study proposes a novel grain-boundary engineering strategy that synergistically enhances both resistance against reduction and dielectric stability in BaTiO3-based ceramics sintered under reducing atmosphere. By constructing uniform 2–3 nm Yb2O3 coatings on 100 nm BaTiO3 particles via chemical co-precipitation, we achieve in situ formation of Yb2Ti2O7 pyrochlore phases at grain boundaries during sintering. Unlike conventional solid-state processed counterparts, the grain-boundary-confined Yb2Ti2O7 phases exhibit dual functional mechanisms: Zener pinning-induced ultrafine grain refinement, and lattice mismatch-generated compressive stress that stabilizes the pseudocubic phase. These coupled effects synergistically elevate carrier migration activation energies, enabling ultrahigh resistivity (7.91 ×1010 Ω·cm) and exceptional resistance against reduction. Simultaneously, the synergy between stress and the grain structure refines ferroelectric domains to the nanoscale, thereby activating strong relaxor behavior that enhances dielectric stability. Consequently, the engineered ceramic simultaneously delivers X7R-compliant thermal stability (ε25℃=1623, tanδ =0.76 %) and minimal DC bias dependence (∆εᵣ/ε0 = 4.2 % at 0–2 V/µm).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of The European Ceramic Society
Journal of The European Ceramic Society 工程技术-材料科学:硅酸盐
CiteScore
10.70
自引率
12.30%
发文量
863
审稿时长
35 days
期刊介绍: The Journal of the European Ceramic Society publishes the results of original research and reviews relating to ceramic materials. Papers of either an experimental or theoretical character will be welcomed on a fully international basis. The emphasis is on novel generic science concerning the relationships between processing, microstructure and properties of polycrystalline ceramics consolidated at high temperature. Papers may relate to any of the conventional categories of ceramic: structural, functional, traditional or composite. The central objective is to sustain a high standard of research quality by means of appropriate reviewing procedures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信