Giulia De Rossi, Ao-wang Qiu, Maxime Berg, Thomas Burgoyne, Andrea Martello, Marlene E. Da Vitoria Lobo, Matteo Rizzi, Sophie Mueller, Jack Blackburn, Yuxuan Meng, Simon Walker-Samuel, Rebecca Shipley, Colin J. Chu, Sobha Sivaprasad, John Greenwood, Stephen E. Moss
{"title":"富亮氨酸α-2糖蛋白1引发小鼠糖尿病视网膜病变的发生。","authors":"Giulia De Rossi, Ao-wang Qiu, Maxime Berg, Thomas Burgoyne, Andrea Martello, Marlene E. Da Vitoria Lobo, Matteo Rizzi, Sophie Mueller, Jack Blackburn, Yuxuan Meng, Simon Walker-Samuel, Rebecca Shipley, Colin J. Chu, Sobha Sivaprasad, John Greenwood, Stephen E. Moss","doi":"10.1126/scitranslmed.adn6047","DOIUrl":null,"url":null,"abstract":"<div >Diabetic retinopathy (DR) is a common complication of diabetes mellitus and a leading cause of visual impairment and blindness in the working-age population. The early stage of the disease is characterized by retinal capillary dysfunction, but the mechanisms whereby hyperglycemia disturbs capillary homeostasis at this initiating stage are poorly understood, posing a barrier to the development of effective early treatments. We used two mouse models of type I diabetes that replicate early features of human retinal vascular pathology. In both the streptozotocin (STZ) model, where hypoinsulinemia is chemically induced, and in the Ins2Akita model, which develops it spontaneously because of a mutation in the insulin gene, we observed early induction of the secreted glycoprotein gene leucine-rich α-2-glycoprotein 1 (<i>Lrg1</i>). Using the Ins2Akita mice, we showed that <i>Lrg1</i> induction preceded that of vascular endothelial growth factor A (<i>Vegfa</i>). LRG1 initiated retinal microvascular dysfunction by modifying transforming growth factor–β (TGFβ) signaling in pericytes, driving transdifferentiation to a more contractile fibrotic phenotype, resulting in narrower capillaries and thickened basement membrane. Using computational modeling, we showed that these early vascular changes impaired retinal blood flow and oxygen delivery, consistent with a defect in visual transduction observed in both models. This early retinal phenotype could be rescued by <i>Lrg1</i> knockout or by treatment with an LRG1 function–blocking antibody in both the STZ and Ins2Akita mice. These results demonstrate that LRG1 is a driver of vascular dysfunction that contributes to the onset of DR and presents itself as a potential preemptive therapeutic target.</div>","PeriodicalId":21580,"journal":{"name":"Science Translational Medicine","volume":"17 821","pages":""},"PeriodicalIF":14.6000,"publicationDate":"2025-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leucine-rich α-2-glycoprotein 1 initiates the onset of diabetic retinopathy in mice\",\"authors\":\"Giulia De Rossi, Ao-wang Qiu, Maxime Berg, Thomas Burgoyne, Andrea Martello, Marlene E. Da Vitoria Lobo, Matteo Rizzi, Sophie Mueller, Jack Blackburn, Yuxuan Meng, Simon Walker-Samuel, Rebecca Shipley, Colin J. Chu, Sobha Sivaprasad, John Greenwood, Stephen E. Moss\",\"doi\":\"10.1126/scitranslmed.adn6047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Diabetic retinopathy (DR) is a common complication of diabetes mellitus and a leading cause of visual impairment and blindness in the working-age population. The early stage of the disease is characterized by retinal capillary dysfunction, but the mechanisms whereby hyperglycemia disturbs capillary homeostasis at this initiating stage are poorly understood, posing a barrier to the development of effective early treatments. We used two mouse models of type I diabetes that replicate early features of human retinal vascular pathology. In both the streptozotocin (STZ) model, where hypoinsulinemia is chemically induced, and in the Ins2Akita model, which develops it spontaneously because of a mutation in the insulin gene, we observed early induction of the secreted glycoprotein gene leucine-rich α-2-glycoprotein 1 (<i>Lrg1</i>). Using the Ins2Akita mice, we showed that <i>Lrg1</i> induction preceded that of vascular endothelial growth factor A (<i>Vegfa</i>). LRG1 initiated retinal microvascular dysfunction by modifying transforming growth factor–β (TGFβ) signaling in pericytes, driving transdifferentiation to a more contractile fibrotic phenotype, resulting in narrower capillaries and thickened basement membrane. Using computational modeling, we showed that these early vascular changes impaired retinal blood flow and oxygen delivery, consistent with a defect in visual transduction observed in both models. This early retinal phenotype could be rescued by <i>Lrg1</i> knockout or by treatment with an LRG1 function–blocking antibody in both the STZ and Ins2Akita mice. These results demonstrate that LRG1 is a driver of vascular dysfunction that contributes to the onset of DR and presents itself as a potential preemptive therapeutic target.</div>\",\"PeriodicalId\":21580,\"journal\":{\"name\":\"Science Translational Medicine\",\"volume\":\"17 821\",\"pages\":\"\"},\"PeriodicalIF\":14.6000,\"publicationDate\":\"2025-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Translational Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/scitranslmed.adn6047\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Translational Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.science.org/doi/10.1126/scitranslmed.adn6047","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Leucine-rich α-2-glycoprotein 1 initiates the onset of diabetic retinopathy in mice
Diabetic retinopathy (DR) is a common complication of diabetes mellitus and a leading cause of visual impairment and blindness in the working-age population. The early stage of the disease is characterized by retinal capillary dysfunction, but the mechanisms whereby hyperglycemia disturbs capillary homeostasis at this initiating stage are poorly understood, posing a barrier to the development of effective early treatments. We used two mouse models of type I diabetes that replicate early features of human retinal vascular pathology. In both the streptozotocin (STZ) model, where hypoinsulinemia is chemically induced, and in the Ins2Akita model, which develops it spontaneously because of a mutation in the insulin gene, we observed early induction of the secreted glycoprotein gene leucine-rich α-2-glycoprotein 1 (Lrg1). Using the Ins2Akita mice, we showed that Lrg1 induction preceded that of vascular endothelial growth factor A (Vegfa). LRG1 initiated retinal microvascular dysfunction by modifying transforming growth factor–β (TGFβ) signaling in pericytes, driving transdifferentiation to a more contractile fibrotic phenotype, resulting in narrower capillaries and thickened basement membrane. Using computational modeling, we showed that these early vascular changes impaired retinal blood flow and oxygen delivery, consistent with a defect in visual transduction observed in both models. This early retinal phenotype could be rescued by Lrg1 knockout or by treatment with an LRG1 function–blocking antibody in both the STZ and Ins2Akita mice. These results demonstrate that LRG1 is a driver of vascular dysfunction that contributes to the onset of DR and presents itself as a potential preemptive therapeutic target.
期刊介绍:
Science Translational Medicine is an online journal that focuses on publishing research at the intersection of science, engineering, and medicine. The goal of the journal is to promote human health by providing a platform for researchers from various disciplines to communicate their latest advancements in biomedical, translational, and clinical research.
The journal aims to address the slow translation of scientific knowledge into effective treatments and health measures. It publishes articles that fill the knowledge gaps between preclinical research and medical applications, with a focus on accelerating the translation of knowledge into new ways of preventing, diagnosing, and treating human diseases.
The scope of Science Translational Medicine includes various areas such as cardiovascular disease, immunology/vaccines, metabolism/diabetes/obesity, neuroscience/neurology/psychiatry, cancer, infectious diseases, policy, behavior, bioengineering, chemical genomics/drug discovery, imaging, applied physical sciences, medical nanotechnology, drug delivery, biomarkers, gene therapy/regenerative medicine, toxicology and pharmacokinetics, data mining, cell culture, animal and human studies, medical informatics, and other interdisciplinary approaches to medicine.
The target audience of the journal includes researchers and management in academia, government, and the biotechnology and pharmaceutical industries. It is also relevant to physician scientists, regulators, policy makers, investors, business developers, and funding agencies.