针对土拉菌毒力因子的高亲和力微蛋白结合物的重新设计。

IF 16.9
Gizem Gokce-Alpkilic, Buwei Huang, Andi Liu, Lieselotte S M Kreuk, Yaxi Wang, Victor Adebomi, Yensi Flores Bueso, Asim K Bera, Alex Kang, Stacey R Gerben, Stephen Rettie, Dionne K Vafeados, Nicole Roullier, Inna Goreshnik, Xinting Li, David Baker, Joshua J Woodward, Joseph D Mougous, Gaurav Bhardwaj
{"title":"针对土拉菌毒力因子的高亲和力微蛋白结合物的重新设计。","authors":"Gizem Gokce-Alpkilic, Buwei Huang, Andi Liu, Lieselotte S M Kreuk, Yaxi Wang, Victor Adebomi, Yensi Flores Bueso, Asim K Bera, Alex Kang, Stacey R Gerben, Stephen Rettie, Dionne K Vafeados, Nicole Roullier, Inna Goreshnik, Xinting Li, David Baker, Joshua J Woodward, Joseph D Mougous, Gaurav Bhardwaj","doi":"10.1002/anie.202516058","DOIUrl":null,"url":null,"abstract":"<p><p>Francisella tularensis poses considerable public health risk due to its high infectivity and potential for bioterrorism. Francisella-like lipoprotein (Flpp3), a key virulence factor unique to Francisella, plays critical roles in infection and immune evasion, making it a promising target for therapeutic development. However, the lack of well-defined binding pockets and structural information on native interactions has hindered structure-guided ligand discovery against Flpp3. Here, we used a combination of physics-based and deep-learning methods to design high-affinity miniprotein binders targeting two distinct sites on Flpp3. We identified four binders for site I with binding affinities ranging between 24-110 nM. For the second site, an initial binder showed a dissociation constant (K<sub>D</sub>) of 81 nM, and subsequent site saturation mutagenesis yielded variants with sub-nanomolar affinities. Circular dichroism confirmed the topology of designed miniproteins. The X-ray crystal structure of Flpp3 in complex with a site I binder is nearly identical to the design model (Cα root-mean-square deviation (RMSD): 0.9 Å). These designed miniproteins provide research tools to explore the roles of Flpp3 in tularemia and should enable the development of new therapeutic candidates.</p>","PeriodicalId":520556,"journal":{"name":"Angewandte Chemie (International ed. in English)","volume":" ","pages":"e202516058"},"PeriodicalIF":16.9000,"publicationDate":"2025-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"De Novo Design of High-Affinity Miniprotein Binders Targeting Francisella Tularensis Virulence Factor.\",\"authors\":\"Gizem Gokce-Alpkilic, Buwei Huang, Andi Liu, Lieselotte S M Kreuk, Yaxi Wang, Victor Adebomi, Yensi Flores Bueso, Asim K Bera, Alex Kang, Stacey R Gerben, Stephen Rettie, Dionne K Vafeados, Nicole Roullier, Inna Goreshnik, Xinting Li, David Baker, Joshua J Woodward, Joseph D Mougous, Gaurav Bhardwaj\",\"doi\":\"10.1002/anie.202516058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Francisella tularensis poses considerable public health risk due to its high infectivity and potential for bioterrorism. Francisella-like lipoprotein (Flpp3), a key virulence factor unique to Francisella, plays critical roles in infection and immune evasion, making it a promising target for therapeutic development. However, the lack of well-defined binding pockets and structural information on native interactions has hindered structure-guided ligand discovery against Flpp3. Here, we used a combination of physics-based and deep-learning methods to design high-affinity miniprotein binders targeting two distinct sites on Flpp3. We identified four binders for site I with binding affinities ranging between 24-110 nM. For the second site, an initial binder showed a dissociation constant (K<sub>D</sub>) of 81 nM, and subsequent site saturation mutagenesis yielded variants with sub-nanomolar affinities. Circular dichroism confirmed the topology of designed miniproteins. The X-ray crystal structure of Flpp3 in complex with a site I binder is nearly identical to the design model (Cα root-mean-square deviation (RMSD): 0.9 Å). These designed miniproteins provide research tools to explore the roles of Flpp3 in tularemia and should enable the development of new therapeutic candidates.</p>\",\"PeriodicalId\":520556,\"journal\":{\"name\":\"Angewandte Chemie (International ed. in English)\",\"volume\":\" \",\"pages\":\"e202516058\"},\"PeriodicalIF\":16.9000,\"publicationDate\":\"2025-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie (International ed. in English)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/anie.202516058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie (International ed. in English)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/anie.202516058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

土拉菌因其高传染性和潜在的生物恐怖主义而构成相当大的公共卫生风险。Francisella-like lipoprotein (Flpp3)是Francisella特有的关键毒力因子,在感染和免疫逃避中起着关键作用,是一种有前景的治疗靶点。然而,缺乏明确的结合口袋和天然相互作用的结构信息阻碍了结构引导的针对Flpp3的配体发现。在这里,我们使用基于物理和深度学习的方法相结合来设计针对Flpp3上两个不同位点的高亲和力微型蛋白结合物。我们确定了位点I的四种结合物,其结合亲和力在24-110 nM之间。对于第二个位点,初始结合物的解离常数(KD)为81 nM,随后的位点饱和诱变产生了亚纳摩尔亲和力的变体。圆二色性证实了设计的微型蛋白的拓扑结构。含有I位点结合剂的Flpp3的x射线晶体结构与设计模型基本一致(Cα均方根偏差(RMSD): 0.9 Å)。这些设计的微型蛋白为探索Flpp3在兔热病中的作用提供了研究工具,并应有助于开发新的候选治疗方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
De Novo Design of High-Affinity Miniprotein Binders Targeting Francisella Tularensis Virulence Factor.

Francisella tularensis poses considerable public health risk due to its high infectivity and potential for bioterrorism. Francisella-like lipoprotein (Flpp3), a key virulence factor unique to Francisella, plays critical roles in infection and immune evasion, making it a promising target for therapeutic development. However, the lack of well-defined binding pockets and structural information on native interactions has hindered structure-guided ligand discovery against Flpp3. Here, we used a combination of physics-based and deep-learning methods to design high-affinity miniprotein binders targeting two distinct sites on Flpp3. We identified four binders for site I with binding affinities ranging between 24-110 nM. For the second site, an initial binder showed a dissociation constant (KD) of 81 nM, and subsequent site saturation mutagenesis yielded variants with sub-nanomolar affinities. Circular dichroism confirmed the topology of designed miniproteins. The X-ray crystal structure of Flpp3 in complex with a site I binder is nearly identical to the design model (Cα root-mean-square deviation (RMSD): 0.9 Å). These designed miniproteins provide research tools to explore the roles of Flpp3 in tularemia and should enable the development of new therapeutic candidates.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信