斯皮尔纪念讲座:多组分和高熵材料:概述。

IF 3.1 3区 化学 Q2 CHEMISTRY, PHYSICAL
Brian Cantor
{"title":"斯皮尔纪念讲座:多组分和高熵材料:概述。","authors":"Brian Cantor","doi":"10.1039/d5fd00110b","DOIUrl":null,"url":null,"abstract":"<p><p>Multicomponent phase space is enormous and contains a vast number of complex new materials. Despite intensive investigation in the last decade and a half however, we are only slowly making progress towards understanding these new materials. This paper attempts to summarise some of the fundamental discoveries we have made about the geography of multicomponent phase space and the wide range of complex new materials that we have found within it. This paper discusses briefly the following topics: the size and shape of multicomponent phase space and the range of single- and multiple-phase fields that it contains; the (initially) surprising presence of many large near-ideal single-phase solid-solution phases, stabilised by a high configurational entropy of mixing; the extensive and wide-ranging variation of local nanostructure and associated mechanical and electronic lattice strain that permeates throughout high-entropy solid-solution phases; and some of the unusual, exciting and valuable properties that are then produced within multicomponent and high-entropy materials. Many of the results discussed have been obtained from the fcc Cantor alloys (based on the original Cantor alloy, equiatomic fcc CrMnFeCoNi) and the bcc Senkov alloys (based on the original Senkov alloy, equiatomic VNbMoTaW), two groups of multicomponent high-entropy single-phase materials that have been particularly widely studied. Similar behaviour is also found in other multicomponent high-entropy single-phase materials, though these have not been studied so intensively. In comparison with multicomponent high-entropy single-phase materials, rather little is known about multicomponent multiphase materials that have also not been studied so intensively.</p>","PeriodicalId":76,"journal":{"name":"Faraday Discussions","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spiers Memorial Lecture: Multicomponent and high-entropy materials: an overview.\",\"authors\":\"Brian Cantor\",\"doi\":\"10.1039/d5fd00110b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Multicomponent phase space is enormous and contains a vast number of complex new materials. Despite intensive investigation in the last decade and a half however, we are only slowly making progress towards understanding these new materials. This paper attempts to summarise some of the fundamental discoveries we have made about the geography of multicomponent phase space and the wide range of complex new materials that we have found within it. This paper discusses briefly the following topics: the size and shape of multicomponent phase space and the range of single- and multiple-phase fields that it contains; the (initially) surprising presence of many large near-ideal single-phase solid-solution phases, stabilised by a high configurational entropy of mixing; the extensive and wide-ranging variation of local nanostructure and associated mechanical and electronic lattice strain that permeates throughout high-entropy solid-solution phases; and some of the unusual, exciting and valuable properties that are then produced within multicomponent and high-entropy materials. Many of the results discussed have been obtained from the fcc Cantor alloys (based on the original Cantor alloy, equiatomic fcc CrMnFeCoNi) and the bcc Senkov alloys (based on the original Senkov alloy, equiatomic VNbMoTaW), two groups of multicomponent high-entropy single-phase materials that have been particularly widely studied. Similar behaviour is also found in other multicomponent high-entropy single-phase materials, though these have not been studied so intensively. In comparison with multicomponent high-entropy single-phase materials, rather little is known about multicomponent multiphase materials that have also not been studied so intensively.</p>\",\"PeriodicalId\":76,\"journal\":{\"name\":\"Faraday Discussions\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Faraday Discussions\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d5fd00110b\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Faraday Discussions","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5fd00110b","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

多组分相空间是巨大的,包含了大量复杂的新材料。然而,尽管在过去的15年里进行了深入的研究,我们在理解这些新材料方面只取得了缓慢的进展。本文试图总结我们在多组分相空间的地理学方面所取得的一些基本发现,以及我们在其中发现的各种复杂的新材料。本文简要讨论了以下几个问题:多分量相空间的大小和形状及其所包含的单相和多相场的范围;(最初)令人惊讶地存在许多大的接近理想的单相固溶相,由高的混合构型熵稳定;局部纳米结构和相关的机械和电子晶格应变的广泛和广泛的变化,渗透在整个高熵固溶相;以及在多组分和高熵材料中产生的一些不寻常的、令人兴奋的和有价值的特性。讨论的许多结果都是从fcc Cantor合金(基于原始Cantor合金,等原子fcc crmnnfeconi)和bcc Senkov合金(基于原始Senkov合金,等原子VNbMoTaW)中获得的,这两组多组分高熵单相材料已经得到了特别广泛的研究。在其他多组分高熵单相材料中也发现了类似的行为,尽管这些还没有得到如此深入的研究。与多组分高熵单相材料相比,我们对多组分多相材料的了解相当少,也没有得到如此深入的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spiers Memorial Lecture: Multicomponent and high-entropy materials: an overview.

Multicomponent phase space is enormous and contains a vast number of complex new materials. Despite intensive investigation in the last decade and a half however, we are only slowly making progress towards understanding these new materials. This paper attempts to summarise some of the fundamental discoveries we have made about the geography of multicomponent phase space and the wide range of complex new materials that we have found within it. This paper discusses briefly the following topics: the size and shape of multicomponent phase space and the range of single- and multiple-phase fields that it contains; the (initially) surprising presence of many large near-ideal single-phase solid-solution phases, stabilised by a high configurational entropy of mixing; the extensive and wide-ranging variation of local nanostructure and associated mechanical and electronic lattice strain that permeates throughout high-entropy solid-solution phases; and some of the unusual, exciting and valuable properties that are then produced within multicomponent and high-entropy materials. Many of the results discussed have been obtained from the fcc Cantor alloys (based on the original Cantor alloy, equiatomic fcc CrMnFeCoNi) and the bcc Senkov alloys (based on the original Senkov alloy, equiatomic VNbMoTaW), two groups of multicomponent high-entropy single-phase materials that have been particularly widely studied. Similar behaviour is also found in other multicomponent high-entropy single-phase materials, though these have not been studied so intensively. In comparison with multicomponent high-entropy single-phase materials, rather little is known about multicomponent multiphase materials that have also not been studied so intensively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Faraday Discussions
Faraday Discussions 化学-物理化学
自引率
0.00%
发文量
259
期刊介绍: Discussion summary and research papers from discussion meetings that focus on rapidly developing areas of physical chemistry and its interfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信