{"title":"在循环离子迁移分离之前,由于离子积累的延长,空间电荷诱导解离。","authors":"Sudam S Mane, Easton K Cox, Kenneth W Lee","doi":"10.1021/jasms.5c00227","DOIUrl":null,"url":null,"abstract":"<p><p>Cyclic ion mobility spectrometry (cIMS) provides the potential for high resolution separations of small molecule isomers using multiple passes in a closed-loop geometry. Achieving this potential, however, is limited by the analyte stability in the instrument. Fragile ions are susceptible to dissociation when employing long analysis times required by multipass separations. Correctly identifying the causes of analyte ion loss is critical to facilitating high resolution ion mobility separations. Our previous work with dexamethasone and betamethasone demonstrated that the separation of these two epimers was partially limited by fragmentation over long multipass separations. Further investigations into the cause suggest that most analyte loss occurs because of accumulating many ions in the trap prior to cIMS injection rather than long exposure times to the cIMS region of the instrument. This observation aligns with previous observations of ion activation due to space charge effects in high density trapped ion populations. This work demonstrates the unique aspects of space charge induced fragmentation in cIMS directly resulting from variable pre-cIMS ion accumulation times due to multipath separations while reinforcing the importance of regulating ion accumulation prior to IMS.</p>","PeriodicalId":672,"journal":{"name":"Journal of the American Society for Mass Spectrometry","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Space Charge Induced Dissociation Due to Extended Ion Accumulation Preceding Cyclic Ion Mobility Separation.\",\"authors\":\"Sudam S Mane, Easton K Cox, Kenneth W Lee\",\"doi\":\"10.1021/jasms.5c00227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cyclic ion mobility spectrometry (cIMS) provides the potential for high resolution separations of small molecule isomers using multiple passes in a closed-loop geometry. Achieving this potential, however, is limited by the analyte stability in the instrument. Fragile ions are susceptible to dissociation when employing long analysis times required by multipass separations. Correctly identifying the causes of analyte ion loss is critical to facilitating high resolution ion mobility separations. Our previous work with dexamethasone and betamethasone demonstrated that the separation of these two epimers was partially limited by fragmentation over long multipass separations. Further investigations into the cause suggest that most analyte loss occurs because of accumulating many ions in the trap prior to cIMS injection rather than long exposure times to the cIMS region of the instrument. This observation aligns with previous observations of ion activation due to space charge effects in high density trapped ion populations. This work demonstrates the unique aspects of space charge induced fragmentation in cIMS directly resulting from variable pre-cIMS ion accumulation times due to multipath separations while reinforcing the importance of regulating ion accumulation prior to IMS.</p>\",\"PeriodicalId\":672,\"journal\":{\"name\":\"Journal of the American Society for Mass Spectrometry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Society for Mass Spectrometry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/jasms.5c00227\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Society for Mass Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jasms.5c00227","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Space Charge Induced Dissociation Due to Extended Ion Accumulation Preceding Cyclic Ion Mobility Separation.
Cyclic ion mobility spectrometry (cIMS) provides the potential for high resolution separations of small molecule isomers using multiple passes in a closed-loop geometry. Achieving this potential, however, is limited by the analyte stability in the instrument. Fragile ions are susceptible to dissociation when employing long analysis times required by multipass separations. Correctly identifying the causes of analyte ion loss is critical to facilitating high resolution ion mobility separations. Our previous work with dexamethasone and betamethasone demonstrated that the separation of these two epimers was partially limited by fragmentation over long multipass separations. Further investigations into the cause suggest that most analyte loss occurs because of accumulating many ions in the trap prior to cIMS injection rather than long exposure times to the cIMS region of the instrument. This observation aligns with previous observations of ion activation due to space charge effects in high density trapped ion populations. This work demonstrates the unique aspects of space charge induced fragmentation in cIMS directly resulting from variable pre-cIMS ion accumulation times due to multipath separations while reinforcing the importance of regulating ion accumulation prior to IMS.
期刊介绍:
The Journal of the American Society for Mass Spectrometry presents research papers covering all aspects of mass spectrometry, incorporating coverage of fields of scientific inquiry in which mass spectrometry can play a role.
Comprehensive in scope, the journal publishes papers on both fundamentals and applications of mass spectrometry. Fundamental subjects include instrumentation principles, design, and demonstration, structures and chemical properties of gas-phase ions, studies of thermodynamic properties, ion spectroscopy, chemical kinetics, mechanisms of ionization, theories of ion fragmentation, cluster ions, and potential energy surfaces. In addition to full papers, the journal offers Communications, Application Notes, and Accounts and Perspectives