非线性动力系统在线辨识的koopman鲁棒模型预测控制

IF 19.2 1区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Ruiqi Ke;Jingchuan Tang;Zongyu Zuo;Yan Shi
{"title":"非线性动力系统在线辨识的koopman鲁棒模型预测控制","authors":"Ruiqi Ke;Jingchuan Tang;Zongyu Zuo;Yan Shi","doi":"10.1109/JAS.2025.125546","DOIUrl":null,"url":null,"abstract":"Dear Editor, This letter presents a novel approach to the data-driven control of unknown nonlinear systems. By leveraging online sparse identification based on the Koopman operator, a high-dimensional linear system model approximating the actual system is obtained online. The upper bound of the discrepancy between the identified model and the actual system is estimated using real-time prediction error, which is then utilized in the design of a tube-based robust model predictive controller. The effectiveness of the proposed approach is validated by numerical simulation.","PeriodicalId":54230,"journal":{"name":"Ieee-Caa Journal of Automatica Sinica","volume":"12 9","pages":"1947-1949"},"PeriodicalIF":19.2000,"publicationDate":"2025-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11208720","citationCount":"0","resultStr":"{\"title\":\"Koopman-Based Robust Model Predictive Control with Online Identification for Nonlinear Dynamical Systems\",\"authors\":\"Ruiqi Ke;Jingchuan Tang;Zongyu Zuo;Yan Shi\",\"doi\":\"10.1109/JAS.2025.125546\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dear Editor, This letter presents a novel approach to the data-driven control of unknown nonlinear systems. By leveraging online sparse identification based on the Koopman operator, a high-dimensional linear system model approximating the actual system is obtained online. The upper bound of the discrepancy between the identified model and the actual system is estimated using real-time prediction error, which is then utilized in the design of a tube-based robust model predictive controller. The effectiveness of the proposed approach is validated by numerical simulation.\",\"PeriodicalId\":54230,\"journal\":{\"name\":\"Ieee-Caa Journal of Automatica Sinica\",\"volume\":\"12 9\",\"pages\":\"1947-1949\"},\"PeriodicalIF\":19.2000,\"publicationDate\":\"2025-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11208720\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ieee-Caa Journal of Automatica Sinica\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11208720/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ieee-Caa Journal of Automatica Sinica","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11208720/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

这封信提出了一种数据驱动控制未知非线性系统的新方法。利用基于Koopman算子的在线稀疏识别,在线得到一个接近实际系统的高维线性系统模型。利用实时预测误差估计辨识出的模型与实际系统之间的误差上界,然后将其用于设计基于管的鲁棒模型预测控制器。通过数值仿真验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Koopman-Based Robust Model Predictive Control with Online Identification for Nonlinear Dynamical Systems
Dear Editor, This letter presents a novel approach to the data-driven control of unknown nonlinear systems. By leveraging online sparse identification based on the Koopman operator, a high-dimensional linear system model approximating the actual system is obtained online. The upper bound of the discrepancy between the identified model and the actual system is estimated using real-time prediction error, which is then utilized in the design of a tube-based robust model predictive controller. The effectiveness of the proposed approach is validated by numerical simulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ieee-Caa Journal of Automatica Sinica
Ieee-Caa Journal of Automatica Sinica Engineering-Control and Systems Engineering
CiteScore
23.50
自引率
11.00%
发文量
880
期刊介绍: The IEEE/CAA Journal of Automatica Sinica is a reputable journal that publishes high-quality papers in English on original theoretical/experimental research and development in the field of automation. The journal covers a wide range of topics including automatic control, artificial intelligence and intelligent control, systems theory and engineering, pattern recognition and intelligent systems, automation engineering and applications, information processing and information systems, network-based automation, robotics, sensing and measurement, and navigation, guidance, and control. Additionally, the journal is abstracted/indexed in several prominent databases including SCIE (Science Citation Index Expanded), EI (Engineering Index), Inspec, Scopus, SCImago, DBLP, CNKI (China National Knowledge Infrastructure), CSCD (Chinese Science Citation Database), and IEEE Xplore.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信