{"title":"ARM架构下无人机自主双向认证和轻量级加密协议ABA-LEP","authors":"Qian Zhou , Jiayang Wu , Weizhi Meng","doi":"10.1016/j.jisa.2025.104268","DOIUrl":null,"url":null,"abstract":"<div><div>Secure communication protocols for drones are crucial in ensuring safety in potentially threatening network environments. However, existing protocols often suffer from weak autonomy, lack of optimization for ARM architecture, and inefficient utilization of lightweight cryptographic algorithms. To address these issues, this paper designs and analyzes an Autonomous Bidirectional Authentication and Lightweight Encryption Protocol (ABA-LEP) for drones under ARM architecture. The protocol optimizes the fixed-point scalar multiplication in SM2 for ARM architecture to accelerate authentication and key agreement efficiency, and employs simple operations like one-time pad limited XOR for lightweight secure communication encryption. Experiments conducted on the ARM Cortex M-4 based CrazyFlie 2.1 drone demonstrate that, in resource-constrained environments, the ABA-LEP achieves a performance improvement of up to 80.18% in fixed-point scalar multiplication with a 256-bit operand, compared to existing techniques. Additionally, the number of transmitted messages per unit time increases by up to 97.02%. The protocol’s resilience against multiple types of attacks has also been verified using the formal verification tool ProVerif.</div></div>","PeriodicalId":48638,"journal":{"name":"Journal of Information Security and Applications","volume":"95 ","pages":"Article 104268"},"PeriodicalIF":3.7000,"publicationDate":"2025-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ABA-LEP: Autonomous Bidirectional Authentication and Lightweight Encryption Protocol for drones under ARM architecture\",\"authors\":\"Qian Zhou , Jiayang Wu , Weizhi Meng\",\"doi\":\"10.1016/j.jisa.2025.104268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Secure communication protocols for drones are crucial in ensuring safety in potentially threatening network environments. However, existing protocols often suffer from weak autonomy, lack of optimization for ARM architecture, and inefficient utilization of lightweight cryptographic algorithms. To address these issues, this paper designs and analyzes an Autonomous Bidirectional Authentication and Lightweight Encryption Protocol (ABA-LEP) for drones under ARM architecture. The protocol optimizes the fixed-point scalar multiplication in SM2 for ARM architecture to accelerate authentication and key agreement efficiency, and employs simple operations like one-time pad limited XOR for lightweight secure communication encryption. Experiments conducted on the ARM Cortex M-4 based CrazyFlie 2.1 drone demonstrate that, in resource-constrained environments, the ABA-LEP achieves a performance improvement of up to 80.18% in fixed-point scalar multiplication with a 256-bit operand, compared to existing techniques. Additionally, the number of transmitted messages per unit time increases by up to 97.02%. The protocol’s resilience against multiple types of attacks has also been verified using the formal verification tool ProVerif.</div></div>\",\"PeriodicalId\":48638,\"journal\":{\"name\":\"Journal of Information Security and Applications\",\"volume\":\"95 \",\"pages\":\"Article 104268\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Information Security and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214212625003059\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information Security and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214212625003059","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
ABA-LEP: Autonomous Bidirectional Authentication and Lightweight Encryption Protocol for drones under ARM architecture
Secure communication protocols for drones are crucial in ensuring safety in potentially threatening network environments. However, existing protocols often suffer from weak autonomy, lack of optimization for ARM architecture, and inefficient utilization of lightweight cryptographic algorithms. To address these issues, this paper designs and analyzes an Autonomous Bidirectional Authentication and Lightweight Encryption Protocol (ABA-LEP) for drones under ARM architecture. The protocol optimizes the fixed-point scalar multiplication in SM2 for ARM architecture to accelerate authentication and key agreement efficiency, and employs simple operations like one-time pad limited XOR for lightweight secure communication encryption. Experiments conducted on the ARM Cortex M-4 based CrazyFlie 2.1 drone demonstrate that, in resource-constrained environments, the ABA-LEP achieves a performance improvement of up to 80.18% in fixed-point scalar multiplication with a 256-bit operand, compared to existing techniques. Additionally, the number of transmitted messages per unit time increases by up to 97.02%. The protocol’s resilience against multiple types of attacks has also been verified using the formal verification tool ProVerif.
期刊介绍:
Journal of Information Security and Applications (JISA) focuses on the original research and practice-driven applications with relevance to information security and applications. JISA provides a common linkage between a vibrant scientific and research community and industry professionals by offering a clear view on modern problems and challenges in information security, as well as identifying promising scientific and "best-practice" solutions. JISA issues offer a balance between original research work and innovative industrial approaches by internationally renowned information security experts and researchers.