模算子叠加(MOS):一种物理引导的机器学习框架,用于解决计算流体动力学中的维数诅咒和多尺度挑战

IF 3.8 2区 物理与天体物理 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Kai Liu , S. Balachandar , Haochen Li
{"title":"模算子叠加(MOS):一种物理引导的机器学习框架,用于解决计算流体动力学中的维数诅咒和多尺度挑战","authors":"Kai Liu ,&nbsp;S. Balachandar ,&nbsp;Haochen Li","doi":"10.1016/j.jcp.2025.114435","DOIUrl":null,"url":null,"abstract":"<div><div>We introduce Modular Operator Superposition (MOS), a physics-guided and AI-augmented framework for efficient, scalable, and generalizable flow field modeling in high-dimensional and multiscale fluid systems. Rather than globally resolving flow fields via mesh-based discretization, MOS decomposes the system into physically meaningful flow primitives, each represented by a reusable modular operator. These operators are trained offline using a parameterized physics-informed neural network (P-PINN) in a single pre-processing step, and later composed through a physics-guided superposition strategy to approximate the full system-level mapping. The core advantage of MOS lies in its modularization strategy. By learning only small-scale flow primitives offline, MOS reduces the training cost to a fixed, minimal investment independent of system-level complexity. In the online stage, MOS dynamically solves for primitive-level interactions for any specific configuration of a system, then reconstructs the global flow field through the superposition of modular outputs. This two-stage online process, comprising both solving and inference, enables scalable and generalizable predictions. As a result, MOS addresses the curse of dimensionality by reducing high-dimensional systems to tractable compositions of modular operators and overcomes multiscale challenges through a scale-adaptive operator assembly that flexibly resolves flow features with minimal overhead. We demonstrate MOS for static and dynamic arrays of up to <span><math><mrow><mn>15</mn><mo>,</mo><mn>000</mn></mrow></math></span> cylinders in a channel cross-flow (corresponding to roughly <span><math><msup><mn>10</mn><mn>5</mn></msup></math></span> input parameters). All of these configurations are solved using a shared single-cylinder cross-flow modular operator, trained offline in 30 hours using a data-free, physics-informed machine learning strategy. In the online stage, MOS achieves end-to-end flow field prediction at 3 to 5 orders of magnitude speedup over conventional numerical solvers, while maintaining high fidelity (<span><math><mrow><msup><mi>R</mi><mn>2</mn></msup><mo>&gt;</mo><mn>0.85</mn></mrow></math></span> for all cases). Moreover, the MOS solution format requires 3 to 5 orders of magnitude lower memory usage than conventional numerical outputs. Once solved, the solution can be queried in real-time to infer flow variables at arbitrary spatial resolutions or scattered points, enabling flexible and efficient visualization across scales. Additional tests indicate that MOS remains robust to polydispersity and translational/rotational motion of the cylinders.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"544 ","pages":"Article 114435"},"PeriodicalIF":3.8000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modular operator superposition (MOS): A physics-guided machine learning framework for addressing the curse of dimensionality and multiscale challenges in computational fluid dynamics\",\"authors\":\"Kai Liu ,&nbsp;S. Balachandar ,&nbsp;Haochen Li\",\"doi\":\"10.1016/j.jcp.2025.114435\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We introduce Modular Operator Superposition (MOS), a physics-guided and AI-augmented framework for efficient, scalable, and generalizable flow field modeling in high-dimensional and multiscale fluid systems. Rather than globally resolving flow fields via mesh-based discretization, MOS decomposes the system into physically meaningful flow primitives, each represented by a reusable modular operator. These operators are trained offline using a parameterized physics-informed neural network (P-PINN) in a single pre-processing step, and later composed through a physics-guided superposition strategy to approximate the full system-level mapping. The core advantage of MOS lies in its modularization strategy. By learning only small-scale flow primitives offline, MOS reduces the training cost to a fixed, minimal investment independent of system-level complexity. In the online stage, MOS dynamically solves for primitive-level interactions for any specific configuration of a system, then reconstructs the global flow field through the superposition of modular outputs. This two-stage online process, comprising both solving and inference, enables scalable and generalizable predictions. As a result, MOS addresses the curse of dimensionality by reducing high-dimensional systems to tractable compositions of modular operators and overcomes multiscale challenges through a scale-adaptive operator assembly that flexibly resolves flow features with minimal overhead. We demonstrate MOS for static and dynamic arrays of up to <span><math><mrow><mn>15</mn><mo>,</mo><mn>000</mn></mrow></math></span> cylinders in a channel cross-flow (corresponding to roughly <span><math><msup><mn>10</mn><mn>5</mn></msup></math></span> input parameters). All of these configurations are solved using a shared single-cylinder cross-flow modular operator, trained offline in 30 hours using a data-free, physics-informed machine learning strategy. In the online stage, MOS achieves end-to-end flow field prediction at 3 to 5 orders of magnitude speedup over conventional numerical solvers, while maintaining high fidelity (<span><math><mrow><msup><mi>R</mi><mn>2</mn></msup><mo>&gt;</mo><mn>0.85</mn></mrow></math></span> for all cases). Moreover, the MOS solution format requires 3 to 5 orders of magnitude lower memory usage than conventional numerical outputs. Once solved, the solution can be queried in real-time to infer flow variables at arbitrary spatial resolutions or scattered points, enabling flexible and efficient visualization across scales. Additional tests indicate that MOS remains robust to polydispersity and translational/rotational motion of the cylinders.</div></div>\",\"PeriodicalId\":352,\"journal\":{\"name\":\"Journal of Computational Physics\",\"volume\":\"544 \",\"pages\":\"Article 114435\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002199912500717X\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002199912500717X","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍了模块化算子叠加(MOS),这是一个物理指导和人工智能增强的框架,用于高维和多尺度流体系统中高效、可扩展和可推广的流场建模。MOS不是通过基于网格的离散化来全局解析流场,而是将系统分解为物理上有意义的流原语,每个流原语都由可重用的模块化算子表示。在单个预处理步骤中,使用参数化物理信息神经网络(P-PINN)离线训练这些算子,然后通过物理引导的叠加策略进行组合,以近似完整的系统级映射。MOS的核心优势在于其模块化策略。通过离线学习小规模的流原语,MOS将训练成本降低到与系统级复杂性无关的固定的最小投资。在在线阶段,MOS动态求解系统任何特定构型的原始交互,然后通过模块输出的叠加重构全局流场。这个两阶段的在线过程,包括求解和推理,实现了可扩展和可推广的预测。因此,MOS通过将高维系统简化为模块化操作器的可处理组合,解决了维度的诅咒,并通过规模自适应操作器组件克服了多尺度挑战,该组件以最小的开销灵活地解决了流量特征。我们演示了在通道横流中多达15,000个圆柱体的静态和动态阵列的MOS(对应于大约105个输入参数)。所有这些配置都是通过一个共享的单缸横流模块操作员来解决的,该操作员使用无数据、物理信息的机器学习策略,在30小时内进行离线训练。在在线阶段,MOS实现了端到端流场预测,速度比传统数值求解器提高了3 ~ 5个数量级,同时保持了高保真度(R2>0.85)。此外,MOS解决方案格式需要比传统数值输出低3到5个数量级的内存使用。求解后,可以实时查询解,以推断任意空间分辨率或分散点的流量变量,实现跨尺度灵活高效的可视化。其他测试表明,MOS对多分散性和圆柱体的平移/旋转运动仍然具有鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modular operator superposition (MOS): A physics-guided machine learning framework for addressing the curse of dimensionality and multiscale challenges in computational fluid dynamics
We introduce Modular Operator Superposition (MOS), a physics-guided and AI-augmented framework for efficient, scalable, and generalizable flow field modeling in high-dimensional and multiscale fluid systems. Rather than globally resolving flow fields via mesh-based discretization, MOS decomposes the system into physically meaningful flow primitives, each represented by a reusable modular operator. These operators are trained offline using a parameterized physics-informed neural network (P-PINN) in a single pre-processing step, and later composed through a physics-guided superposition strategy to approximate the full system-level mapping. The core advantage of MOS lies in its modularization strategy. By learning only small-scale flow primitives offline, MOS reduces the training cost to a fixed, minimal investment independent of system-level complexity. In the online stage, MOS dynamically solves for primitive-level interactions for any specific configuration of a system, then reconstructs the global flow field through the superposition of modular outputs. This two-stage online process, comprising both solving and inference, enables scalable and generalizable predictions. As a result, MOS addresses the curse of dimensionality by reducing high-dimensional systems to tractable compositions of modular operators and overcomes multiscale challenges through a scale-adaptive operator assembly that flexibly resolves flow features with minimal overhead. We demonstrate MOS for static and dynamic arrays of up to 15,000 cylinders in a channel cross-flow (corresponding to roughly 105 input parameters). All of these configurations are solved using a shared single-cylinder cross-flow modular operator, trained offline in 30 hours using a data-free, physics-informed machine learning strategy. In the online stage, MOS achieves end-to-end flow field prediction at 3 to 5 orders of magnitude speedup over conventional numerical solvers, while maintaining high fidelity (R2>0.85 for all cases). Moreover, the MOS solution format requires 3 to 5 orders of magnitude lower memory usage than conventional numerical outputs. Once solved, the solution can be queried in real-time to infer flow variables at arbitrary spatial resolutions or scattered points, enabling flexible and efficient visualization across scales. Additional tests indicate that MOS remains robust to polydispersity and translational/rotational motion of the cylinders.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational Physics
Journal of Computational Physics 物理-计算机:跨学科应用
CiteScore
7.60
自引率
14.60%
发文量
763
审稿时长
5.8 months
期刊介绍: Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries. The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信