空穴掺杂对黄铁矿FeS2热电性能的影响

IF 2.4 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER
Anustup Mukherjee, Alaska Subedi
{"title":"空穴掺杂对黄铁矿FeS2热电性能的影响","authors":"Anustup Mukherjee,&nbsp;Alaska Subedi","doi":"10.1016/j.ssc.2025.116194","DOIUrl":null,"url":null,"abstract":"<div><div>We present a comprehensive first-principles analysis of the thermoelectric transport properties of hole-doped pyrite FeS<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> that includes electron–phonon interactions. This work was motivated by the observed variations in the magnitude of thermopower reported in previous experimental and theoretical studies of hole-doped FeS<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> systems. Our calculations reveal that hole-doped FeS<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> exhibits large positive room-temperature thermopower across all doping levels, with a room-temperature thermopower of 608 <span><math><mi>μ</mi></math></span>V/K at a low hole-doping concentration of 10<sup>19</sup> cm<sup>−3</sup>. This promising thermopower finding prompted a comprehensive investigation of other key thermoelectric parameters governing the thermoelectric figure of merit <span><math><mrow><mi>Z</mi><mi>T</mi></mrow></math></span>. The calculated electrical conductivity is modest and remains below 10<span><math><msup><mrow></mrow><mrow><mn>5</mn></mrow></msup></math></span> S/m at room-temperature for all doping levels, limiting the achievable power factor. Furthermore, the thermal conductivity is found to be phonon driven, with a high room-temperature lattice thermal conductivity of 40.5 W/mK. Consequently, the calculated <span><math><mrow><mi>Z</mi><mi>T</mi></mrow></math></span> remains below 0.1, suggesting that hole-doped FeS<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> may not a viable candidate for effective thermoelectric applications despite its promising thermopower.</div></div>","PeriodicalId":430,"journal":{"name":"Solid State Communications","volume":"406 ","pages":"Article 116194"},"PeriodicalIF":2.4000,"publicationDate":"2025-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of hole-doping on the thermoelectric properties of pyrite FeS2\",\"authors\":\"Anustup Mukherjee,&nbsp;Alaska Subedi\",\"doi\":\"10.1016/j.ssc.2025.116194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We present a comprehensive first-principles analysis of the thermoelectric transport properties of hole-doped pyrite FeS<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> that includes electron–phonon interactions. This work was motivated by the observed variations in the magnitude of thermopower reported in previous experimental and theoretical studies of hole-doped FeS<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> systems. Our calculations reveal that hole-doped FeS<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> exhibits large positive room-temperature thermopower across all doping levels, with a room-temperature thermopower of 608 <span><math><mi>μ</mi></math></span>V/K at a low hole-doping concentration of 10<sup>19</sup> cm<sup>−3</sup>. This promising thermopower finding prompted a comprehensive investigation of other key thermoelectric parameters governing the thermoelectric figure of merit <span><math><mrow><mi>Z</mi><mi>T</mi></mrow></math></span>. The calculated electrical conductivity is modest and remains below 10<span><math><msup><mrow></mrow><mrow><mn>5</mn></mrow></msup></math></span> S/m at room-temperature for all doping levels, limiting the achievable power factor. Furthermore, the thermal conductivity is found to be phonon driven, with a high room-temperature lattice thermal conductivity of 40.5 W/mK. Consequently, the calculated <span><math><mrow><mi>Z</mi><mi>T</mi></mrow></math></span> remains below 0.1, suggesting that hole-doped FeS<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> may not a viable candidate for effective thermoelectric applications despite its promising thermopower.</div></div>\",\"PeriodicalId\":430,\"journal\":{\"name\":\"Solid State Communications\",\"volume\":\"406 \",\"pages\":\"Article 116194\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid State Communications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0038109825003692\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038109825003692","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一个全面的第一性原理分析的热电输运性质的空穴掺杂黄铁矿FeS2,包括电子-声子相互作用。这项工作的动机是在先前的空穴掺杂FeS2系统的实验和理论研究中观察到的热功率大小的变化。我们的计算表明,空穴掺杂FeS2在所有掺杂水平上都表现出较大的正室温热功率,在低空穴掺杂浓度为1019 cm−3时,室温热功率为608 μV/K。这一有希望的热电发现促使了对其他关键热电参数的全面研究,这些参数控制着ZT的热电性能。计算出的电导率适中,在室温下所有掺杂水平都保持在105 S/m以下,限制了可实现的功率因数。此外,发现热导率是声子驱动的,室温晶格热导率高达40.5 W/mK。因此,计算出的ZT仍然低于0.1,这表明尽管空穴掺杂的FeS2具有很好的热电性能,但它可能不是有效热电应用的可行候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact of hole-doping on the thermoelectric properties of pyrite FeS2
We present a comprehensive first-principles analysis of the thermoelectric transport properties of hole-doped pyrite FeS2 that includes electron–phonon interactions. This work was motivated by the observed variations in the magnitude of thermopower reported in previous experimental and theoretical studies of hole-doped FeS2 systems. Our calculations reveal that hole-doped FeS2 exhibits large positive room-temperature thermopower across all doping levels, with a room-temperature thermopower of 608 μV/K at a low hole-doping concentration of 1019 cm−3. This promising thermopower finding prompted a comprehensive investigation of other key thermoelectric parameters governing the thermoelectric figure of merit ZT. The calculated electrical conductivity is modest and remains below 105 S/m at room-temperature for all doping levels, limiting the achievable power factor. Furthermore, the thermal conductivity is found to be phonon driven, with a high room-temperature lattice thermal conductivity of 40.5 W/mK. Consequently, the calculated ZT remains below 0.1, suggesting that hole-doped FeS2 may not a viable candidate for effective thermoelectric applications despite its promising thermopower.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solid State Communications
Solid State Communications 物理-物理:凝聚态物理
CiteScore
3.40
自引率
4.80%
发文量
287
审稿时长
51 days
期刊介绍: Solid State Communications is an international medium for the publication of short communications and original research articles on significant developments in condensed matter science, giving scientists immediate access to important, recently completed work. The journal publishes original experimental and theoretical research on the physical and chemical properties of solids and other condensed systems and also on their preparation. The submission of manuscripts reporting research on the basic physics of materials science and devices, as well as of state-of-the-art microstructures and nanostructures, is encouraged. A coherent quantitative treatment emphasizing new physics is expected rather than a simple accumulation of experimental data. Consistent with these aims, the short communications should be kept concise and short, usually not longer than six printed pages. The number of figures and tables should also be kept to a minimum. Solid State Communications now also welcomes original research articles without length restrictions. The Fast-Track section of Solid State Communications is the venue for very rapid publication of short communications on significant developments in condensed matter science. The goal is to offer the broad condensed matter community quick and immediate access to publish recently completed papers in research areas that are rapidly evolving and in which there are developments with great potential impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信