{"title":"利用密集关联网络进行解剖学上准确的心脏分割","authors":"Zahid Ullah, Jihie Kim","doi":"10.1016/j.engappai.2025.112742","DOIUrl":null,"url":null,"abstract":"<div><div>Deep learning-based cardiac segmentation has seen significant advancements over the years. Many studies have tackled the challenge of anatomically incorrect segmentation predictions by introducing auxiliary modules. These modules either post-process segmentation outputs or enforce consistency between specific points to ensure anatomical correctness. However, such approaches often increase network complexity, require separate training for these modules, and may lack robustness in scenarios with poor visibility. To address these limitations, we propose a novel transformer-based architecture that leverages dense associative networks to learn and retain specific patterns inherent to cardiac inputs. Unlike traditional methods, our approach restricts the network to memorize a limited set of patterns. During forward propagation, a weighted sum of these patterns is used to enforce anatomical correctness in the output. Since these patterns are input-independent, the model demonstrates enhanced robustness, even in cases with poor visibility. The proposed pipeline was evaluated on two publicly available datasets, i.e., Cardiac Acquisitions for Multi-structure Ultrasound Segmentation and CardiacNet. Experimental results indicate that our model consistently outperforms baseline approaches across all evaluation metrics, highlighting its effectiveness and robustness in cardiac segmentation tasks. Code is available at: <span><span>https://github.com/Zahid672/cardio-segmentation</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":"162 ","pages":"112742"},"PeriodicalIF":8.0000,"publicationDate":"2025-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anatomically accurate cardiac segmentation using Dense Associative Networks\",\"authors\":\"Zahid Ullah, Jihie Kim\",\"doi\":\"10.1016/j.engappai.2025.112742\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Deep learning-based cardiac segmentation has seen significant advancements over the years. Many studies have tackled the challenge of anatomically incorrect segmentation predictions by introducing auxiliary modules. These modules either post-process segmentation outputs or enforce consistency between specific points to ensure anatomical correctness. However, such approaches often increase network complexity, require separate training for these modules, and may lack robustness in scenarios with poor visibility. To address these limitations, we propose a novel transformer-based architecture that leverages dense associative networks to learn and retain specific patterns inherent to cardiac inputs. Unlike traditional methods, our approach restricts the network to memorize a limited set of patterns. During forward propagation, a weighted sum of these patterns is used to enforce anatomical correctness in the output. Since these patterns are input-independent, the model demonstrates enhanced robustness, even in cases with poor visibility. The proposed pipeline was evaluated on two publicly available datasets, i.e., Cardiac Acquisitions for Multi-structure Ultrasound Segmentation and CardiacNet. Experimental results indicate that our model consistently outperforms baseline approaches across all evaluation metrics, highlighting its effectiveness and robustness in cardiac segmentation tasks. Code is available at: <span><span>https://github.com/Zahid672/cardio-segmentation</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":50523,\"journal\":{\"name\":\"Engineering Applications of Artificial Intelligence\",\"volume\":\"162 \",\"pages\":\"112742\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2025-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Applications of Artificial Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0952197625027733\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952197625027733","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Anatomically accurate cardiac segmentation using Dense Associative Networks
Deep learning-based cardiac segmentation has seen significant advancements over the years. Many studies have tackled the challenge of anatomically incorrect segmentation predictions by introducing auxiliary modules. These modules either post-process segmentation outputs or enforce consistency between specific points to ensure anatomical correctness. However, such approaches often increase network complexity, require separate training for these modules, and may lack robustness in scenarios with poor visibility. To address these limitations, we propose a novel transformer-based architecture that leverages dense associative networks to learn and retain specific patterns inherent to cardiac inputs. Unlike traditional methods, our approach restricts the network to memorize a limited set of patterns. During forward propagation, a weighted sum of these patterns is used to enforce anatomical correctness in the output. Since these patterns are input-independent, the model demonstrates enhanced robustness, even in cases with poor visibility. The proposed pipeline was evaluated on two publicly available datasets, i.e., Cardiac Acquisitions for Multi-structure Ultrasound Segmentation and CardiacNet. Experimental results indicate that our model consistently outperforms baseline approaches across all evaluation metrics, highlighting its effectiveness and robustness in cardiac segmentation tasks. Code is available at: https://github.com/Zahid672/cardio-segmentation.
期刊介绍:
Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.