用于可持续析氢的一维蒙锡纳米线:尺寸和费米能级驱动催化

IF 3.2 3区 化学 Q2 CHEMISTRY, PHYSICAL
Xiaoxue Shang, Lingxiao Zhu, He Ma, Yue Liu, Yan Liu, Tian Cui, Da Li
{"title":"用于可持续析氢的一维蒙锡纳米线:尺寸和费米能级驱动催化","authors":"Xiaoxue Shang, Lingxiao Zhu, He Ma, Yue Liu, Yan Liu, Tian Cui, Da Li","doi":"10.1021/acs.jpcc.5c05646","DOIUrl":null,"url":null,"abstract":"Transition-metal chalcogenide nanowires are promising noble-metal-free catalysts. Their catalytic properties remain underexplored for size and electronic structure tuning. The Mo<sub>6</sub>S<sub>6</sub> nanowire shows well-documented environmental stability. Their structural analogs (Mo<sub><i>n</i></sub>S<sub><i>n</i></sub>, <i>n</i> = 6–11) lack systematic study. First-principles calculations reveal size-dependent hydrogen evolution reaction (HER) performance in the Mo<sub><i>n</i></sub>S<sub><i>n</i></sub> nanowires, comparable to platinum. The Mo<sub>6</sub>S<sub>6</sub> nanowire exhibits a hydrogen adsorption free energy of −0.16 eV, similar to Pt(111) at −0.17 eV. The Mo<sub>8</sub>S<sub>8</sub> nanowire, a semiconductor, shows unexpected HER activity despite its larger diameter. Electronic structure analysis indicates hydrogen adsorption triggers a semiconductor-to-metal transition. Strong Mo_4d–H_1s orbital coupling enables dynamic charge redistribution and interfacial conductivity. This metastability overcomes diameter-dependent activity limitations. HER performance in 1D chalcogenides depends on two factors: nanowire diameter affects active-site accessibility, and metal–adsorbate orbital hybridization drives electronic restructuring. The Mo<sub>8</sub>S<sub>8</sub> nanowire combines Pt-competitive activity, ambient stability, and scalable synthesis potential. These findings redefine design principles for low-dimensional HER electrocatalysts. They connect quantum confinement effects with orbital-level reactivity modulation. The results provide a universal strategy for tuning low-dimensional HER catalysts. This approach has implications for transition-metal-based energy conversion systems.","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"115 2 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"1D MonSn Nanowires for Sustainable Hydrogen Evolution: Size and Fermi-Level Driven Catalysis\",\"authors\":\"Xiaoxue Shang, Lingxiao Zhu, He Ma, Yue Liu, Yan Liu, Tian Cui, Da Li\",\"doi\":\"10.1021/acs.jpcc.5c05646\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Transition-metal chalcogenide nanowires are promising noble-metal-free catalysts. Their catalytic properties remain underexplored for size and electronic structure tuning. The Mo<sub>6</sub>S<sub>6</sub> nanowire shows well-documented environmental stability. Their structural analogs (Mo<sub><i>n</i></sub>S<sub><i>n</i></sub>, <i>n</i> = 6–11) lack systematic study. First-principles calculations reveal size-dependent hydrogen evolution reaction (HER) performance in the Mo<sub><i>n</i></sub>S<sub><i>n</i></sub> nanowires, comparable to platinum. The Mo<sub>6</sub>S<sub>6</sub> nanowire exhibits a hydrogen adsorption free energy of −0.16 eV, similar to Pt(111) at −0.17 eV. The Mo<sub>8</sub>S<sub>8</sub> nanowire, a semiconductor, shows unexpected HER activity despite its larger diameter. Electronic structure analysis indicates hydrogen adsorption triggers a semiconductor-to-metal transition. Strong Mo_4d–H_1s orbital coupling enables dynamic charge redistribution and interfacial conductivity. This metastability overcomes diameter-dependent activity limitations. HER performance in 1D chalcogenides depends on two factors: nanowire diameter affects active-site accessibility, and metal–adsorbate orbital hybridization drives electronic restructuring. The Mo<sub>8</sub>S<sub>8</sub> nanowire combines Pt-competitive activity, ambient stability, and scalable synthesis potential. These findings redefine design principles for low-dimensional HER electrocatalysts. They connect quantum confinement effects with orbital-level reactivity modulation. The results provide a universal strategy for tuning low-dimensional HER catalysts. This approach has implications for transition-metal-based energy conversion systems.\",\"PeriodicalId\":61,\"journal\":{\"name\":\"The Journal of Physical Chemistry C\",\"volume\":\"115 2 1\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry C\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jpcc.5c05646\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcc.5c05646","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

过渡金属硫族纳米线是一种很有前途的无贵金属催化剂。它们的催化性能在尺寸和电子结构调整方面仍未得到充分的研究。Mo6S6纳米线表现出良好的环境稳定性。它们的结构类似物(MonSn, n = 6-11)缺乏系统的研究。第一性原理计算揭示了MonSn纳米线中与尺寸相关的析氢反应(HER)性能,可与铂相媲美。Mo6S6纳米线的氢吸附自由能为- 0.16 eV,与Pt(111)的- 0.17 eV相似。Mo8S8纳米线是一种半导体,尽管它的直径更大,但却显示出意想不到的HER活性。电子结构分析表明,氢吸附触发半导体到金属的转变。强Mo_4d-H_1s轨道耦合可实现动态电荷再分配和界面导电性。这种亚稳态克服了与直径相关的活性限制。一维硫族化合物的she性能取决于两个因素:纳米线直径影响活性位点的可及性,金属-吸附物轨道杂化驱动电子重构。Mo8S8纳米线结合了pt竞争活性、环境稳定性和可扩展的合成潜力。这些发现重新定义了低维HER电催化剂的设计原则。他们将量子约束效应与轨道级反应性调制联系起来。结果为低维HER催化剂的调谐提供了一种通用策略。这种方法对过渡金属基能量转换系统具有启示意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

1D MonSn Nanowires for Sustainable Hydrogen Evolution: Size and Fermi-Level Driven Catalysis

1D MonSn Nanowires for Sustainable Hydrogen Evolution: Size and Fermi-Level Driven Catalysis
Transition-metal chalcogenide nanowires are promising noble-metal-free catalysts. Their catalytic properties remain underexplored for size and electronic structure tuning. The Mo6S6 nanowire shows well-documented environmental stability. Their structural analogs (MonSn, n = 6–11) lack systematic study. First-principles calculations reveal size-dependent hydrogen evolution reaction (HER) performance in the MonSn nanowires, comparable to platinum. The Mo6S6 nanowire exhibits a hydrogen adsorption free energy of −0.16 eV, similar to Pt(111) at −0.17 eV. The Mo8S8 nanowire, a semiconductor, shows unexpected HER activity despite its larger diameter. Electronic structure analysis indicates hydrogen adsorption triggers a semiconductor-to-metal transition. Strong Mo_4d–H_1s orbital coupling enables dynamic charge redistribution and interfacial conductivity. This metastability overcomes diameter-dependent activity limitations. HER performance in 1D chalcogenides depends on two factors: nanowire diameter affects active-site accessibility, and metal–adsorbate orbital hybridization drives electronic restructuring. The Mo8S8 nanowire combines Pt-competitive activity, ambient stability, and scalable synthesis potential. These findings redefine design principles for low-dimensional HER electrocatalysts. They connect quantum confinement effects with orbital-level reactivity modulation. The results provide a universal strategy for tuning low-dimensional HER catalysts. This approach has implications for transition-metal-based energy conversion systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry C
The Journal of Physical Chemistry C 化学-材料科学:综合
CiteScore
6.50
自引率
8.10%
发文量
2047
审稿时长
1.8 months
期刊介绍: The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信