Min Tang, Yuhao Zhang, Ronghua Liang, Guoqiang Deng
{"title":"基于加密垂直分区数据的非交互式在线医疗预诊断系统。","authors":"Min Tang, Yuhao Zhang, Ronghua Liang, Guoqiang Deng","doi":"10.1016/j.jbi.2025.104940","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>In medical environments, patient records are stored as heterogeneous features across various institutions, prohibiting raw data sharing due to legal or institutional constraints. This fragmentation presents challenges for Online Medical Pre-Diagnosis (OMPD) systems. Existing methods (such as federated learning) require multiple rounds of interactions among all participating parties (hospitals and cloud servers), resulting in frequent communication. Moreover, due to the sharing of global gradients, they are vulnerable to inference attacks, leading to information leakage. In this paper, we propose a secure and efficient the OMPD system framework to address the problem of vertical data fragmentation, aiming to resolve the contradiction between medical data isolation and model collaboration.</p><p><strong>Methods: </strong>We propose PPNLR, a secure framework for building the OMPD systems. This framework combines functional encryption and blinding factors to design the sample-feature dimension encryption algorithm and the privacy-preserving vectorization training algorithm. Decoupling sample computation from model training enables cross-client data aggregation with only a single communication between hospitals and cloud servers.</p><p><strong>Results: </strong>Security analysis shows that PPNLR is resistant to semi-honest inference attacks and collusion attacks. Evaluation results based on six real-world medical datasets (text and images) show that: (i) The inference accuracy is close to that of the centralized plaintext training benchmark; (ii) The computational efficiency is at least 3.6× higher than that of comparable approaches; (iii) The communication complexity is significantly reduced by eliminating dependencies on iteration count.</p><p><strong>Conclusion: </strong>PPNLR achieves data protection through cryptographic primitives, maintaining high diagnostic accuracy while ensuring the security of medical data and model parameters. Its single-communication architecture significantly reduces the deployment threshold in resource-constrained scenarios, providing a practical framework for building the privacy-friendly OMPD systems.</p>","PeriodicalId":15263,"journal":{"name":"Journal of Biomedical Informatics","volume":" ","pages":"104940"},"PeriodicalIF":4.5000,"publicationDate":"2025-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A non-interactive Online Medical Pre-Diagnosis system on encrypted vertically partitioned data.\",\"authors\":\"Min Tang, Yuhao Zhang, Ronghua Liang, Guoqiang Deng\",\"doi\":\"10.1016/j.jbi.2025.104940\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>In medical environments, patient records are stored as heterogeneous features across various institutions, prohibiting raw data sharing due to legal or institutional constraints. This fragmentation presents challenges for Online Medical Pre-Diagnosis (OMPD) systems. Existing methods (such as federated learning) require multiple rounds of interactions among all participating parties (hospitals and cloud servers), resulting in frequent communication. Moreover, due to the sharing of global gradients, they are vulnerable to inference attacks, leading to information leakage. In this paper, we propose a secure and efficient the OMPD system framework to address the problem of vertical data fragmentation, aiming to resolve the contradiction between medical data isolation and model collaboration.</p><p><strong>Methods: </strong>We propose PPNLR, a secure framework for building the OMPD systems. This framework combines functional encryption and blinding factors to design the sample-feature dimension encryption algorithm and the privacy-preserving vectorization training algorithm. Decoupling sample computation from model training enables cross-client data aggregation with only a single communication between hospitals and cloud servers.</p><p><strong>Results: </strong>Security analysis shows that PPNLR is resistant to semi-honest inference attacks and collusion attacks. Evaluation results based on six real-world medical datasets (text and images) show that: (i) The inference accuracy is close to that of the centralized plaintext training benchmark; (ii) The computational efficiency is at least 3.6× higher than that of comparable approaches; (iii) The communication complexity is significantly reduced by eliminating dependencies on iteration count.</p><p><strong>Conclusion: </strong>PPNLR achieves data protection through cryptographic primitives, maintaining high diagnostic accuracy while ensuring the security of medical data and model parameters. Its single-communication architecture significantly reduces the deployment threshold in resource-constrained scenarios, providing a practical framework for building the privacy-friendly OMPD systems.</p>\",\"PeriodicalId\":15263,\"journal\":{\"name\":\"Journal of Biomedical Informatics\",\"volume\":\" \",\"pages\":\"104940\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomedical Informatics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jbi.2025.104940\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jbi.2025.104940","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A non-interactive Online Medical Pre-Diagnosis system on encrypted vertically partitioned data.
Objective: In medical environments, patient records are stored as heterogeneous features across various institutions, prohibiting raw data sharing due to legal or institutional constraints. This fragmentation presents challenges for Online Medical Pre-Diagnosis (OMPD) systems. Existing methods (such as federated learning) require multiple rounds of interactions among all participating parties (hospitals and cloud servers), resulting in frequent communication. Moreover, due to the sharing of global gradients, they are vulnerable to inference attacks, leading to information leakage. In this paper, we propose a secure and efficient the OMPD system framework to address the problem of vertical data fragmentation, aiming to resolve the contradiction between medical data isolation and model collaboration.
Methods: We propose PPNLR, a secure framework for building the OMPD systems. This framework combines functional encryption and blinding factors to design the sample-feature dimension encryption algorithm and the privacy-preserving vectorization training algorithm. Decoupling sample computation from model training enables cross-client data aggregation with only a single communication between hospitals and cloud servers.
Results: Security analysis shows that PPNLR is resistant to semi-honest inference attacks and collusion attacks. Evaluation results based on six real-world medical datasets (text and images) show that: (i) The inference accuracy is close to that of the centralized plaintext training benchmark; (ii) The computational efficiency is at least 3.6× higher than that of comparable approaches; (iii) The communication complexity is significantly reduced by eliminating dependencies on iteration count.
Conclusion: PPNLR achieves data protection through cryptographic primitives, maintaining high diagnostic accuracy while ensuring the security of medical data and model parameters. Its single-communication architecture significantly reduces the deployment threshold in resource-constrained scenarios, providing a practical framework for building the privacy-friendly OMPD systems.
期刊介绍:
The Journal of Biomedical Informatics reflects a commitment to high-quality original research papers, reviews, and commentaries in the area of biomedical informatics methodology. Although we publish articles motivated by applications in the biomedical sciences (for example, clinical medicine, health care, population health, and translational bioinformatics), the journal emphasizes reports of new methodologies and techniques that have general applicability and that form the basis for the evolving science of biomedical informatics. Articles on medical devices; evaluations of implemented systems (including clinical trials of information technologies); or papers that provide insight into a biological process, a specific disease, or treatment options would generally be more suitable for publication in other venues. Papers on applications of signal processing and image analysis are often more suitable for biomedical engineering journals or other informatics journals, although we do publish papers that emphasize the information management and knowledge representation/modeling issues that arise in the storage and use of biological signals and images. System descriptions are welcome if they illustrate and substantiate the underlying methodology that is the principal focus of the report and an effort is made to address the generalizability and/or range of application of that methodology. Note also that, given the international nature of JBI, papers that deal with specific languages other than English, or with country-specific health systems or approaches, are acceptable for JBI only if they offer generalizable lessons that are relevant to the broad JBI readership, regardless of their country, language, culture, or health system.