Haotian Li, Congmin Xia, Yuewei Song, Jin Chen, Yanjun Liu
{"title":"从网络药理学、分子动力学和实验验证等方面揭示西参草和牛膝草通过mtDNA-cGAS-STING通路治疗原发性干燥综合征的机制。","authors":"Haotian Li, Congmin Xia, Yuewei Song, Jin Chen, Yanjun Liu","doi":"10.3389/fimmu.2025.1675429","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>With the aim of clarifying the therapeutic mechanisms of the American Ginseng-Achyranthes bidentata (AG&A) herbal pair in primary Sjögren's syndrome (pSS), this study employs an integrated approach combining network pharmacology, molecular docking, molecular dynamics simulations, and animal experiments.</p><p><strong>Methods: </strong>Network pharmacology & LC-MS/MS was utilized to identify the active components and potential targets of A&A. Molecular docking and dynamics simulations were performed to evaluate binding affinity and complex stability with key targets. Animal experiments using non-obese diabetic (NOD) mice were conducted to validate symptom improvement by critical active components.</p><p><strong>Results: </strong>Network pharmacology identified baicalin and quercetin as key active components. Molecular docking revealed strong binding affinities (binding energy ≤ -8.0 kcal/mol) between these compounds and apoptosis-related proteins, BAX and CASP3. Molecular dynamics simulations confirmed the stability of these complexes. Animal experiments demonstrated that baicalin can significantly reduce inflammatory cytokines of IL-18, TNF-α, IFN-α, and IFN-β,CXCL-10 (p < 0.05), decrease mtDNA release, and downregulate cGAS-STING pathway-related proteins including cGAS, STING, CASP3, ZBP1, TBK1, p-STING, p-TBK1, IRF3, p-IRF3 and BAX.</p><p><strong>Conclusion: </strong>The critical components baicalin and quercetin from AG&A, particularly in aqueous extracts, exhibit therapeutic efficacy against pSS. This study provides experimental evidence for their action mechanism through modulating the mtDNA-cGAS-STING pathway. While highlighting their therapeutic potential, additional <i>in vivo</i> and clinical studies are warranted to validate these findings.</p>","PeriodicalId":12622,"journal":{"name":"Frontiers in Immunology","volume":"16 ","pages":"1675429"},"PeriodicalIF":5.9000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12531212/pdf/","citationCount":"0","resultStr":"{\"title\":\"Unveiling the mechanisms of American ginseng and achyranthes in treatment of primary Sjogren's syndrome via mtDNA-cGAS-STING pathway insights from network pharmacology, molecular dynamics, and experimental validation.\",\"authors\":\"Haotian Li, Congmin Xia, Yuewei Song, Jin Chen, Yanjun Liu\",\"doi\":\"10.3389/fimmu.2025.1675429\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>With the aim of clarifying the therapeutic mechanisms of the American Ginseng-Achyranthes bidentata (AG&A) herbal pair in primary Sjögren's syndrome (pSS), this study employs an integrated approach combining network pharmacology, molecular docking, molecular dynamics simulations, and animal experiments.</p><p><strong>Methods: </strong>Network pharmacology & LC-MS/MS was utilized to identify the active components and potential targets of A&A. Molecular docking and dynamics simulations were performed to evaluate binding affinity and complex stability with key targets. Animal experiments using non-obese diabetic (NOD) mice were conducted to validate symptom improvement by critical active components.</p><p><strong>Results: </strong>Network pharmacology identified baicalin and quercetin as key active components. Molecular docking revealed strong binding affinities (binding energy ≤ -8.0 kcal/mol) between these compounds and apoptosis-related proteins, BAX and CASP3. Molecular dynamics simulations confirmed the stability of these complexes. Animal experiments demonstrated that baicalin can significantly reduce inflammatory cytokines of IL-18, TNF-α, IFN-α, and IFN-β,CXCL-10 (p < 0.05), decrease mtDNA release, and downregulate cGAS-STING pathway-related proteins including cGAS, STING, CASP3, ZBP1, TBK1, p-STING, p-TBK1, IRF3, p-IRF3 and BAX.</p><p><strong>Conclusion: </strong>The critical components baicalin and quercetin from AG&A, particularly in aqueous extracts, exhibit therapeutic efficacy against pSS. This study provides experimental evidence for their action mechanism through modulating the mtDNA-cGAS-STING pathway. While highlighting their therapeutic potential, additional <i>in vivo</i> and clinical studies are warranted to validate these findings.</p>\",\"PeriodicalId\":12622,\"journal\":{\"name\":\"Frontiers in Immunology\",\"volume\":\"16 \",\"pages\":\"1675429\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12531212/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/fimmu.2025.1675429\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fimmu.2025.1675429","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Unveiling the mechanisms of American ginseng and achyranthes in treatment of primary Sjogren's syndrome via mtDNA-cGAS-STING pathway insights from network pharmacology, molecular dynamics, and experimental validation.
Objective: With the aim of clarifying the therapeutic mechanisms of the American Ginseng-Achyranthes bidentata (AG&A) herbal pair in primary Sjögren's syndrome (pSS), this study employs an integrated approach combining network pharmacology, molecular docking, molecular dynamics simulations, and animal experiments.
Methods: Network pharmacology & LC-MS/MS was utilized to identify the active components and potential targets of A&A. Molecular docking and dynamics simulations were performed to evaluate binding affinity and complex stability with key targets. Animal experiments using non-obese diabetic (NOD) mice were conducted to validate symptom improvement by critical active components.
Results: Network pharmacology identified baicalin and quercetin as key active components. Molecular docking revealed strong binding affinities (binding energy ≤ -8.0 kcal/mol) between these compounds and apoptosis-related proteins, BAX and CASP3. Molecular dynamics simulations confirmed the stability of these complexes. Animal experiments demonstrated that baicalin can significantly reduce inflammatory cytokines of IL-18, TNF-α, IFN-α, and IFN-β,CXCL-10 (p < 0.05), decrease mtDNA release, and downregulate cGAS-STING pathway-related proteins including cGAS, STING, CASP3, ZBP1, TBK1, p-STING, p-TBK1, IRF3, p-IRF3 and BAX.
Conclusion: The critical components baicalin and quercetin from AG&A, particularly in aqueous extracts, exhibit therapeutic efficacy against pSS. This study provides experimental evidence for their action mechanism through modulating the mtDNA-cGAS-STING pathway. While highlighting their therapeutic potential, additional in vivo and clinical studies are warranted to validate these findings.
期刊介绍:
Frontiers in Immunology is a leading journal in its field, publishing rigorously peer-reviewed research across basic, translational and clinical immunology. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.
Frontiers in Immunology is the official Journal of the International Union of Immunological Societies (IUIS). Encompassing the entire field of Immunology, this journal welcomes papers that investigate basic mechanisms of immune system development and function, with a particular emphasis given to the description of the clinical and immunological phenotype of human immune disorders, and on the definition of their molecular basis.