Myriam Ben Khelil, Maxime Fredon, Nawfel Adib, Adeline Bouard, Marie Perchaud, Syrine Abdeljaoued, Charles-Frédéric Mantion, Kamal Asgarov, Philippe Guillaume, Laurie Spehner, Evan Seffar, Marjorie Labesse, Angélique Vienot, Virginie Mougey, Mathieu Gonçalves-Venturelli, Sara Bobisse, Alexandre Harari, Camilla Jandus, Francine Garnache-Ottou, Delphine Binda, Olivier Adotévi, Yann Godet, Marie Kroemer, Christophe Borg, Romain Loyon
{"title":"靶向SALL4的HLA i类限制性TCR用于癌症免疫治疗。","authors":"Myriam Ben Khelil, Maxime Fredon, Nawfel Adib, Adeline Bouard, Marie Perchaud, Syrine Abdeljaoued, Charles-Frédéric Mantion, Kamal Asgarov, Philippe Guillaume, Laurie Spehner, Evan Seffar, Marjorie Labesse, Angélique Vienot, Virginie Mougey, Mathieu Gonçalves-Venturelli, Sara Bobisse, Alexandre Harari, Camilla Jandus, Francine Garnache-Ottou, Delphine Binda, Olivier Adotévi, Yann Godet, Marie Kroemer, Christophe Borg, Romain Loyon","doi":"10.1158/2326-6066.CIR-24-0207","DOIUrl":null,"url":null,"abstract":"<p><p>Aberrant expression of the oncogene SALL4 is associated with stemness, more aggressive cancer phenotype, and reduced patient survival in various tumor types making SALL4 a potential target for cancer immunotherapy. We conducted a transcriptional analysis of SALL4 expression in colorectal cancer (CRC) tissues and demonstrated that SALL4 was overexpressed in primary tumor and paired liver metastasis. Then, we identified the SALL4-derived S9V peptide as a naturally processed peptide that induced specific CD8+ T-cell responses from the peripheral blood of gastrointestinal cancer patients whereas no responses were observed for the peripheral blood of healthy donors. Thereafter, we isolated a SALL4-specific T-cell receptor (TCR) that recognized this peptide in the most common HLA molecule in the Caucasian population, HLA-A2, and used this to develop TCR-engineered T cells. In vitro analysis showed that SALL4 TCR-redirected primary CD8+ T cells exhibited cytotoxic effects against SALL4-expressing tumor cells and produced effector cytokines. In vivo, SALL4-TCR T cells significantly reduced tumor growth and improved survival of tumor-bearing mice. Moreover, SALL4-TCR T cells displayed no toxicity against hematopoietic stem cells. Thus, we conclude that T cells engineered to express a SALL4-specific TCR have the potential to be effective as immunotherapy for solid cancers and pave the way for further clinical development.</p>","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":" ","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Targeting SALL4 with an HLA Class I-restricted TCR for cancer immunotherapy.\",\"authors\":\"Myriam Ben Khelil, Maxime Fredon, Nawfel Adib, Adeline Bouard, Marie Perchaud, Syrine Abdeljaoued, Charles-Frédéric Mantion, Kamal Asgarov, Philippe Guillaume, Laurie Spehner, Evan Seffar, Marjorie Labesse, Angélique Vienot, Virginie Mougey, Mathieu Gonçalves-Venturelli, Sara Bobisse, Alexandre Harari, Camilla Jandus, Francine Garnache-Ottou, Delphine Binda, Olivier Adotévi, Yann Godet, Marie Kroemer, Christophe Borg, Romain Loyon\",\"doi\":\"10.1158/2326-6066.CIR-24-0207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Aberrant expression of the oncogene SALL4 is associated with stemness, more aggressive cancer phenotype, and reduced patient survival in various tumor types making SALL4 a potential target for cancer immunotherapy. We conducted a transcriptional analysis of SALL4 expression in colorectal cancer (CRC) tissues and demonstrated that SALL4 was overexpressed in primary tumor and paired liver metastasis. Then, we identified the SALL4-derived S9V peptide as a naturally processed peptide that induced specific CD8+ T-cell responses from the peripheral blood of gastrointestinal cancer patients whereas no responses were observed for the peripheral blood of healthy donors. Thereafter, we isolated a SALL4-specific T-cell receptor (TCR) that recognized this peptide in the most common HLA molecule in the Caucasian population, HLA-A2, and used this to develop TCR-engineered T cells. In vitro analysis showed that SALL4 TCR-redirected primary CD8+ T cells exhibited cytotoxic effects against SALL4-expressing tumor cells and produced effector cytokines. In vivo, SALL4-TCR T cells significantly reduced tumor growth and improved survival of tumor-bearing mice. Moreover, SALL4-TCR T cells displayed no toxicity against hematopoietic stem cells. Thus, we conclude that T cells engineered to express a SALL4-specific TCR have the potential to be effective as immunotherapy for solid cancers and pave the way for further clinical development.</p>\",\"PeriodicalId\":9474,\"journal\":{\"name\":\"Cancer immunology research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer immunology research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1158/2326-6066.CIR-24-0207\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer immunology research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/2326-6066.CIR-24-0207","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Targeting SALL4 with an HLA Class I-restricted TCR for cancer immunotherapy.
Aberrant expression of the oncogene SALL4 is associated with stemness, more aggressive cancer phenotype, and reduced patient survival in various tumor types making SALL4 a potential target for cancer immunotherapy. We conducted a transcriptional analysis of SALL4 expression in colorectal cancer (CRC) tissues and demonstrated that SALL4 was overexpressed in primary tumor and paired liver metastasis. Then, we identified the SALL4-derived S9V peptide as a naturally processed peptide that induced specific CD8+ T-cell responses from the peripheral blood of gastrointestinal cancer patients whereas no responses were observed for the peripheral blood of healthy donors. Thereafter, we isolated a SALL4-specific T-cell receptor (TCR) that recognized this peptide in the most common HLA molecule in the Caucasian population, HLA-A2, and used this to develop TCR-engineered T cells. In vitro analysis showed that SALL4 TCR-redirected primary CD8+ T cells exhibited cytotoxic effects against SALL4-expressing tumor cells and produced effector cytokines. In vivo, SALL4-TCR T cells significantly reduced tumor growth and improved survival of tumor-bearing mice. Moreover, SALL4-TCR T cells displayed no toxicity against hematopoietic stem cells. Thus, we conclude that T cells engineered to express a SALL4-specific TCR have the potential to be effective as immunotherapy for solid cancers and pave the way for further clinical development.
期刊介绍:
Cancer Immunology Research publishes exceptional original articles showcasing significant breakthroughs across the spectrum of cancer immunology. From fundamental inquiries into host-tumor interactions to developmental therapeutics, early translational studies, and comprehensive analyses of late-stage clinical trials, the journal provides a comprehensive view of the discipline. In addition to original research, the journal features reviews and opinion pieces of broad significance, fostering cross-disciplinary collaboration within the cancer research community. Serving as a premier resource for immunology knowledge in cancer research, the journal drives deeper insights into the host-tumor relationship, potent cancer treatments, and enhanced clinical outcomes.
Key areas of interest include endogenous antitumor immunity, tumor-promoting inflammation, cancer antigens, vaccines, antibodies, cellular therapy, cytokines, immune regulation, immune suppression, immunomodulatory effects of cancer treatment, emerging technologies, and insightful clinical investigations with immunological implications.