PowerNetMax:用于irs辅助物联网网络优化的DRL-GNN框架

IF 4.6 2区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Muhammad Farhan , Lei Wang , Nadir Shah , Gabriel-Miro Muntean , Awais Bin Asif , Houbing Herbert Song
{"title":"PowerNetMax:用于irs辅助物联网网络优化的DRL-GNN框架","authors":"Muhammad Farhan ,&nbsp;Lei Wang ,&nbsp;Nadir Shah ,&nbsp;Gabriel-Miro Muntean ,&nbsp;Awais Bin Asif ,&nbsp;Houbing Herbert Song","doi":"10.1016/j.comnet.2025.111760","DOIUrl":null,"url":null,"abstract":"<div><div>Intelligent Reflecting Surfaces (IRS) have recently emerged as a cutting-edge technology in 6G Internet of Things (IoT) communications, offering substantial connectivity enhancements, particularly in remote, high-mobility, or obstacle-prone environments. This paper proposes PowerNetMax, an innovative framework designed to improve overall network connectivity, reliability, and energy efficiency in IRS-assisted IoT communication systems. PowerNetMax leverages a comprehensive set of network parameters and integrates the strengths of Deep Reinforcement Learning (DRL) and Graph Neural Networks (GNN) to enable intelligent and adaptive optimization. Through extensive experimentation, PowerNetMax demonstrates up to 5–20 % higher received power, 50 % faster convergence, and 20 % higher throughput under mobility conditions compared to state-of-the-art GNN-based and heuristic solutions. Extensive simulation results confirm that PowerNetMax achieves superior adaptability and robustness, highlighting its effectiveness for future IRS-assisted IoT networks.</div></div>","PeriodicalId":50637,"journal":{"name":"Computer Networks","volume":"273 ","pages":"Article 111760"},"PeriodicalIF":4.6000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PowerNetMax: A DRL-GNN framework for IRS-Assisted IOT network optimization\",\"authors\":\"Muhammad Farhan ,&nbsp;Lei Wang ,&nbsp;Nadir Shah ,&nbsp;Gabriel-Miro Muntean ,&nbsp;Awais Bin Asif ,&nbsp;Houbing Herbert Song\",\"doi\":\"10.1016/j.comnet.2025.111760\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Intelligent Reflecting Surfaces (IRS) have recently emerged as a cutting-edge technology in 6G Internet of Things (IoT) communications, offering substantial connectivity enhancements, particularly in remote, high-mobility, or obstacle-prone environments. This paper proposes PowerNetMax, an innovative framework designed to improve overall network connectivity, reliability, and energy efficiency in IRS-assisted IoT communication systems. PowerNetMax leverages a comprehensive set of network parameters and integrates the strengths of Deep Reinforcement Learning (DRL) and Graph Neural Networks (GNN) to enable intelligent and adaptive optimization. Through extensive experimentation, PowerNetMax demonstrates up to 5–20 % higher received power, 50 % faster convergence, and 20 % higher throughput under mobility conditions compared to state-of-the-art GNN-based and heuristic solutions. Extensive simulation results confirm that PowerNetMax achieves superior adaptability and robustness, highlighting its effectiveness for future IRS-assisted IoT networks.</div></div>\",\"PeriodicalId\":50637,\"journal\":{\"name\":\"Computer Networks\",\"volume\":\"273 \",\"pages\":\"Article 111760\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1389128625007261\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389128625007261","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

智能反射面(IRS)最近成为6G物联网(IoT)通信中的一项前沿技术,提供了大量的连接性增强,特别是在远程、高移动性或易受障碍物影响的环境中。本文提出了PowerNetMax,这是一个创新的框架,旨在提高irs辅助物联网通信系统的整体网络连接、可靠性和能源效率。PowerNetMax利用了一套全面的网络参数,并集成了深度强化学习(DRL)和图神经网络(GNN)的优势,以实现智能和自适应优化。通过广泛的实验,与最先进的基于gnn和启发式解决方案相比,PowerNetMax在移动性条件下的接收功率提高了5 - 20%,收敛速度提高了50%,吞吐量提高了20%。广泛的仿真结果证实,PowerNetMax具有卓越的适应性和鲁棒性,突出了其在未来irs辅助物联网网络中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PowerNetMax: A DRL-GNN framework for IRS-Assisted IOT network optimization
Intelligent Reflecting Surfaces (IRS) have recently emerged as a cutting-edge technology in 6G Internet of Things (IoT) communications, offering substantial connectivity enhancements, particularly in remote, high-mobility, or obstacle-prone environments. This paper proposes PowerNetMax, an innovative framework designed to improve overall network connectivity, reliability, and energy efficiency in IRS-assisted IoT communication systems. PowerNetMax leverages a comprehensive set of network parameters and integrates the strengths of Deep Reinforcement Learning (DRL) and Graph Neural Networks (GNN) to enable intelligent and adaptive optimization. Through extensive experimentation, PowerNetMax demonstrates up to 5–20 % higher received power, 50 % faster convergence, and 20 % higher throughput under mobility conditions compared to state-of-the-art GNN-based and heuristic solutions. Extensive simulation results confirm that PowerNetMax achieves superior adaptability and robustness, highlighting its effectiveness for future IRS-assisted IoT networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Networks
Computer Networks 工程技术-电信学
CiteScore
10.80
自引率
3.60%
发文量
434
审稿时长
8.6 months
期刊介绍: Computer Networks is an international, archival journal providing a publication vehicle for complete coverage of all topics of interest to those involved in the computer communications networking area. The audience includes researchers, managers and operators of networks as well as designers and implementors. The Editorial Board will consider any material for publication that is of interest to those groups.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信