基于鲁棒混合神经-卡尔曼滤波的电动汽车超级电容器充电状态实时估计

Islam A. Sayed , Yousef Mahmoud
{"title":"基于鲁棒混合神经-卡尔曼滤波的电动汽车超级电容器充电状态实时估计","authors":"Islam A. Sayed ,&nbsp;Yousef Mahmoud","doi":"10.1016/j.fub.2025.100115","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate estimation of supercapacitor state-of-charge (SOC) is vital for optimal energy management in electric vehicles (EVs), particularly within hybrid energy storage systems (HESS). Challenges arise from nonlinear dynamics, self-discharge, temperature sensitivity, and aging-induced parameter drift. This study introduces KalmanNet, a neural network-enhanced Kalman filter, for supercapacitor SOC estimation. The approach integrates a three-branch equivalent circuit model with a data-driven Kalman gain learner trained solely on voltage and current measurements, without requiring synthetic Kalman gain ground truth. KalmanNet adapts dynamically to system uncertainties while preserving the recursive nature of traditional Kalman filters. Validation using experimental data from commercial supercapacitors under standard EV driving cycles, aging effects, disturbances, and computational load demonstrates its effectiveness. KalmanNet achieves a root mean square error (RMSE) of 0.35%, outperforming the Extended Kalman Filter (2%), Sigma-Point/Unscented Kalman Filters (1.1%), Particle Filters (0.8%), and Recurrent Neural Networks (2.2%). Processor-in-the-loop (PIL) tests confirm real-time feasibility with execution times well below task periods and CPU usage under 0.1%. The results demonstrate KalmanNet’s superior accuracy, robustness, and computational efficiency for real-time EV applications.</div></div>","PeriodicalId":100560,"journal":{"name":"Future Batteries","volume":"8 ","pages":"Article 100115"},"PeriodicalIF":0.0000,"publicationDate":"2025-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust hybrid Neural–Kalman filter for real-time supercapacitor state-of-charge estimation in electric vehicles\",\"authors\":\"Islam A. Sayed ,&nbsp;Yousef Mahmoud\",\"doi\":\"10.1016/j.fub.2025.100115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Accurate estimation of supercapacitor state-of-charge (SOC) is vital for optimal energy management in electric vehicles (EVs), particularly within hybrid energy storage systems (HESS). Challenges arise from nonlinear dynamics, self-discharge, temperature sensitivity, and aging-induced parameter drift. This study introduces KalmanNet, a neural network-enhanced Kalman filter, for supercapacitor SOC estimation. The approach integrates a three-branch equivalent circuit model with a data-driven Kalman gain learner trained solely on voltage and current measurements, without requiring synthetic Kalman gain ground truth. KalmanNet adapts dynamically to system uncertainties while preserving the recursive nature of traditional Kalman filters. Validation using experimental data from commercial supercapacitors under standard EV driving cycles, aging effects, disturbances, and computational load demonstrates its effectiveness. KalmanNet achieves a root mean square error (RMSE) of 0.35%, outperforming the Extended Kalman Filter (2%), Sigma-Point/Unscented Kalman Filters (1.1%), Particle Filters (0.8%), and Recurrent Neural Networks (2.2%). Processor-in-the-loop (PIL) tests confirm real-time feasibility with execution times well below task periods and CPU usage under 0.1%. The results demonstrate KalmanNet’s superior accuracy, robustness, and computational efficiency for real-time EV applications.</div></div>\",\"PeriodicalId\":100560,\"journal\":{\"name\":\"Future Batteries\",\"volume\":\"8 \",\"pages\":\"Article 100115\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future Batteries\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2950264025000942\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Batteries","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950264025000942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

准确估计超级电容器的充电状态(SOC)对于电动汽车(ev)的最佳能量管理至关重要,特别是在混合能源存储系统(HESS)中。挑战来自非线性动力学、自放电、温度敏感性和老化引起的参数漂移。本文介绍了一种神经网络增强的卡尔曼滤波器KalmanNet,用于超级电容器荷电状态估计。该方法将三分支等效电路模型与数据驱动的卡尔曼增益学习器集成在一起,该学习器仅训练电压和电流测量,而不需要合成卡尔曼增益接地真值。卡尔曼网在保持传统卡尔曼滤波器递归特性的同时,动态适应系统的不确定性。商用超级电容器在标准电动汽车行驶周期、老化效应、干扰和计算负载下的实验数据验证了该方法的有效性。KalmanNet的均方根误差(RMSE)为0.35%,优于扩展卡尔曼滤波器(2%)、Sigma-Point/Unscented卡尔曼滤波器(1.1%)、粒子滤波器(0.8%)和循环神经网络(2.2%)。循环中的处理器(PIL)测试确认了执行时间远低于任务周期和CPU使用率低于0.1%的实时可行性。结果表明,KalmanNet在实时EV应用中具有优越的精度、鲁棒性和计算效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust hybrid Neural–Kalman filter for real-time supercapacitor state-of-charge estimation in electric vehicles
Accurate estimation of supercapacitor state-of-charge (SOC) is vital for optimal energy management in electric vehicles (EVs), particularly within hybrid energy storage systems (HESS). Challenges arise from nonlinear dynamics, self-discharge, temperature sensitivity, and aging-induced parameter drift. This study introduces KalmanNet, a neural network-enhanced Kalman filter, for supercapacitor SOC estimation. The approach integrates a three-branch equivalent circuit model with a data-driven Kalman gain learner trained solely on voltage and current measurements, without requiring synthetic Kalman gain ground truth. KalmanNet adapts dynamically to system uncertainties while preserving the recursive nature of traditional Kalman filters. Validation using experimental data from commercial supercapacitors under standard EV driving cycles, aging effects, disturbances, and computational load demonstrates its effectiveness. KalmanNet achieves a root mean square error (RMSE) of 0.35%, outperforming the Extended Kalman Filter (2%), Sigma-Point/Unscented Kalman Filters (1.1%), Particle Filters (0.8%), and Recurrent Neural Networks (2.2%). Processor-in-the-loop (PIL) tests confirm real-time feasibility with execution times well below task periods and CPU usage under 0.1%. The results demonstrate KalmanNet’s superior accuracy, robustness, and computational efficiency for real-time EV applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信