典型相关分析辅助设计基于卡尔曼滤波的工业控制系统监测残差发生器

IF 3.9 2区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS
Long Gao , Donghua Zhou , Steven X. Ding
{"title":"典型相关分析辅助设计基于卡尔曼滤波的工业控制系统监测残差发生器","authors":"Long Gao ,&nbsp;Donghua Zhou ,&nbsp;Steven X. Ding","doi":"10.1016/j.jprocont.2025.103569","DOIUrl":null,"url":null,"abstract":"<div><div>Kalman filters are widely applied for residual generation thanks to the property that the generated residual is white and of minimum covariance. This enables an optimal monitoring. However, the explicit mathematical model is difficult to achieve in a real industrial automation system, and the effect of the feedback has not been explicitly considered in the existing data-driven design method, which degrades the monitoring performance of a Kalman filter-based monitoring system. To deal with such an issue, this paper proposes a purely data-driven realization of the Kalman filter-based residual generator for process monitoring of industrial control systems with a closed-loop configuration. Firstly, a least-mean-square interpretation of canonical correlation analysis (CCA) is introduced, which is helpful to explore the relationships between inputs and outputs of industrial control systems. Then, a CCA-aided Kalman filter-based residual generator is constructed, which is realized by identifying the Kalman gain matrix and the data-driven stable kernel representation. Different from the existing method, the proposed one achieves superior monitoring performance by considering closed-loop dynamics and the correlation between inputs and noises, which is caused by the feedback control structure of systems. The effectiveness of the proposed method is demonstrated and compared through an experimental three-tank system.</div></div>","PeriodicalId":50079,"journal":{"name":"Journal of Process Control","volume":"155 ","pages":"Article 103569"},"PeriodicalIF":3.9000,"publicationDate":"2025-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Canonical correlation analysis-aided design of Kalman filter-based residual generator for monitoring of industrial control systems\",\"authors\":\"Long Gao ,&nbsp;Donghua Zhou ,&nbsp;Steven X. Ding\",\"doi\":\"10.1016/j.jprocont.2025.103569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Kalman filters are widely applied for residual generation thanks to the property that the generated residual is white and of minimum covariance. This enables an optimal monitoring. However, the explicit mathematical model is difficult to achieve in a real industrial automation system, and the effect of the feedback has not been explicitly considered in the existing data-driven design method, which degrades the monitoring performance of a Kalman filter-based monitoring system. To deal with such an issue, this paper proposes a purely data-driven realization of the Kalman filter-based residual generator for process monitoring of industrial control systems with a closed-loop configuration. Firstly, a least-mean-square interpretation of canonical correlation analysis (CCA) is introduced, which is helpful to explore the relationships between inputs and outputs of industrial control systems. Then, a CCA-aided Kalman filter-based residual generator is constructed, which is realized by identifying the Kalman gain matrix and the data-driven stable kernel representation. Different from the existing method, the proposed one achieves superior monitoring performance by considering closed-loop dynamics and the correlation between inputs and noises, which is caused by the feedback control structure of systems. The effectiveness of the proposed method is demonstrated and compared through an experimental three-tank system.</div></div>\",\"PeriodicalId\":50079,\"journal\":{\"name\":\"Journal of Process Control\",\"volume\":\"155 \",\"pages\":\"Article 103569\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Process Control\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0959152425001970\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Process Control","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959152425001970","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

卡尔曼滤波由于产生的残差是白色的,协方差最小,被广泛应用于残差生成。这样可以实现最佳监控。然而,在实际的工业自动化系统中难以实现显式的数学模型,并且现有的数据驱动设计方法没有明确考虑反馈的影响,从而降低了基于卡尔曼滤波的监控系统的监控性能。为了解决这一问题,本文提出了一种纯数据驱动的基于卡尔曼滤波的残差发生器,用于闭环结构的工业控制系统过程监测。首先,介绍了典型相关分析(CCA)的最小均方解释,这有助于探索工业控制系统输入和输出之间的关系。然后,通过辨识卡尔曼增益矩阵和数据驱动的稳定核表示,构造了基于cca辅助卡尔曼滤波的残差发生器。与现有方法不同的是,该方法考虑了系统反馈控制结构引起的闭环动力学和输入与噪声之间的相关性,实现了较好的监测性能。通过一个三槽系统的实验验证和比较了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Canonical correlation analysis-aided design of Kalman filter-based residual generator for monitoring of industrial control systems
Kalman filters are widely applied for residual generation thanks to the property that the generated residual is white and of minimum covariance. This enables an optimal monitoring. However, the explicit mathematical model is difficult to achieve in a real industrial automation system, and the effect of the feedback has not been explicitly considered in the existing data-driven design method, which degrades the monitoring performance of a Kalman filter-based monitoring system. To deal with such an issue, this paper proposes a purely data-driven realization of the Kalman filter-based residual generator for process monitoring of industrial control systems with a closed-loop configuration. Firstly, a least-mean-square interpretation of canonical correlation analysis (CCA) is introduced, which is helpful to explore the relationships between inputs and outputs of industrial control systems. Then, a CCA-aided Kalman filter-based residual generator is constructed, which is realized by identifying the Kalman gain matrix and the data-driven stable kernel representation. Different from the existing method, the proposed one achieves superior monitoring performance by considering closed-loop dynamics and the correlation between inputs and noises, which is caused by the feedback control structure of systems. The effectiveness of the proposed method is demonstrated and compared through an experimental three-tank system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Process Control
Journal of Process Control 工程技术-工程:化工
CiteScore
7.00
自引率
11.90%
发文量
159
审稿时长
74 days
期刊介绍: This international journal covers the application of control theory, operations research, computer science and engineering principles to the solution of process control problems. In addition to the traditional chemical processing and manufacturing applications, the scope of process control problems involves a wide range of applications that includes energy processes, nano-technology, systems biology, bio-medical engineering, pharmaceutical processing technology, energy storage and conversion, smart grid, and data analytics among others. Papers on the theory in these areas will also be accepted provided the theoretical contribution is aimed at the application and the development of process control techniques. Topics covered include: • Control applications• Process monitoring• Plant-wide control• Process control systems• Control techniques and algorithms• Process modelling and simulation• Design methods Advanced design methods exclude well established and widely studied traditional design techniques such as PID tuning and its many variants. Applications in fields such as control of automotive engines, machinery and robotics are not deemed suitable unless a clear motivation for the relevance to process control is provided.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信