{"title":"面向工业过程机械与实时数据融合的混合建模与迭代协同优化","authors":"Mingyu Liang, Yi Zheng, Shaoyuan Li","doi":"10.1016/j.jprocont.2025.103567","DOIUrl":null,"url":null,"abstract":"<div><div>This paper addresses the hybrid modeling challenges arising from incomplete mechanistic models and operational data noise interference in process industries, proposing a two-layer joint iterative optimization framework for updating parameters of hybrid models integrating mechanistic and data-driven models. The framework achieves real-time anomaly elimination through an outlier screening algorithm, while employing a bidirectional feedback algorithm to enable continuous collaboration and mutual constraints between mechanistic and data-driven models during parameter identification and iterative updates, ensuring robust hybrid model predictions. The proposed method resolves hybrid modeling and updating under conditions of mechanistic model information deficiency. Additionally, by incorporating model uncertainty and prior knowledge, it accomplishes a knowledge-incorporated hybrid modeling process, demonstrating significant practical value. Unlike conventional hybrid modeling approaches where mechanistic knowledge merely guides the modeling process, our method achieves dynamic co-evolution between mechanistic and data-driven models. This paper elaborates on three key aspects: (1) using mechanistic models to screen anomalous data; (2) incorporating mechanistic parameter uncertainty and prior knowledge through Bayesian methods to design knowledge-guided parameter updating method; (3) implementation details of the two-layer joint iterative optimization algorithm. Comparative experiments validate the method’s superior performance under multiple operating conditions and anomalies, demonstrating its scientific validity and practical value in dynamic optimization processes.</div></div>","PeriodicalId":50079,"journal":{"name":"Journal of Process Control","volume":"155 ","pages":"Article 103567"},"PeriodicalIF":3.9000,"publicationDate":"2025-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards hybrid modeling with mechanistic and real-time data embed iterative co-optimization for industrial processes\",\"authors\":\"Mingyu Liang, Yi Zheng, Shaoyuan Li\",\"doi\":\"10.1016/j.jprocont.2025.103567\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper addresses the hybrid modeling challenges arising from incomplete mechanistic models and operational data noise interference in process industries, proposing a two-layer joint iterative optimization framework for updating parameters of hybrid models integrating mechanistic and data-driven models. The framework achieves real-time anomaly elimination through an outlier screening algorithm, while employing a bidirectional feedback algorithm to enable continuous collaboration and mutual constraints between mechanistic and data-driven models during parameter identification and iterative updates, ensuring robust hybrid model predictions. The proposed method resolves hybrid modeling and updating under conditions of mechanistic model information deficiency. Additionally, by incorporating model uncertainty and prior knowledge, it accomplishes a knowledge-incorporated hybrid modeling process, demonstrating significant practical value. Unlike conventional hybrid modeling approaches where mechanistic knowledge merely guides the modeling process, our method achieves dynamic co-evolution between mechanistic and data-driven models. This paper elaborates on three key aspects: (1) using mechanistic models to screen anomalous data; (2) incorporating mechanistic parameter uncertainty and prior knowledge through Bayesian methods to design knowledge-guided parameter updating method; (3) implementation details of the two-layer joint iterative optimization algorithm. Comparative experiments validate the method’s superior performance under multiple operating conditions and anomalies, demonstrating its scientific validity and practical value in dynamic optimization processes.</div></div>\",\"PeriodicalId\":50079,\"journal\":{\"name\":\"Journal of Process Control\",\"volume\":\"155 \",\"pages\":\"Article 103567\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Process Control\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0959152425001957\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Process Control","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959152425001957","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Towards hybrid modeling with mechanistic and real-time data embed iterative co-optimization for industrial processes
This paper addresses the hybrid modeling challenges arising from incomplete mechanistic models and operational data noise interference in process industries, proposing a two-layer joint iterative optimization framework for updating parameters of hybrid models integrating mechanistic and data-driven models. The framework achieves real-time anomaly elimination through an outlier screening algorithm, while employing a bidirectional feedback algorithm to enable continuous collaboration and mutual constraints between mechanistic and data-driven models during parameter identification and iterative updates, ensuring robust hybrid model predictions. The proposed method resolves hybrid modeling and updating under conditions of mechanistic model information deficiency. Additionally, by incorporating model uncertainty and prior knowledge, it accomplishes a knowledge-incorporated hybrid modeling process, demonstrating significant practical value. Unlike conventional hybrid modeling approaches where mechanistic knowledge merely guides the modeling process, our method achieves dynamic co-evolution between mechanistic and data-driven models. This paper elaborates on three key aspects: (1) using mechanistic models to screen anomalous data; (2) incorporating mechanistic parameter uncertainty and prior knowledge through Bayesian methods to design knowledge-guided parameter updating method; (3) implementation details of the two-layer joint iterative optimization algorithm. Comparative experiments validate the method’s superior performance under multiple operating conditions and anomalies, demonstrating its scientific validity and practical value in dynamic optimization processes.
期刊介绍:
This international journal covers the application of control theory, operations research, computer science and engineering principles to the solution of process control problems. In addition to the traditional chemical processing and manufacturing applications, the scope of process control problems involves a wide range of applications that includes energy processes, nano-technology, systems biology, bio-medical engineering, pharmaceutical processing technology, energy storage and conversion, smart grid, and data analytics among others.
Papers on the theory in these areas will also be accepted provided the theoretical contribution is aimed at the application and the development of process control techniques.
Topics covered include:
• Control applications• Process monitoring• Plant-wide control• Process control systems• Control techniques and algorithms• Process modelling and simulation• Design methods
Advanced design methods exclude well established and widely studied traditional design techniques such as PID tuning and its many variants. Applications in fields such as control of automotive engines, machinery and robotics are not deemed suitable unless a clear motivation for the relevance to process control is provided.