一种基于图论的无序结构构型搜索蒙特卡罗树策略

IF 9.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Bing He , Zhicong Lai , Da Wang , Xiaotong Liu , Yue Liu , Miao Xu , Bowei Pu , Qingbao Wang , Ruofang Wang , Maxim Avdeev , Siqi Shi
{"title":"一种基于图论的无序结构构型搜索蒙特卡罗树策略","authors":"Bing He ,&nbsp;Zhicong Lai ,&nbsp;Da Wang ,&nbsp;Xiaotong Liu ,&nbsp;Yue Liu ,&nbsp;Miao Xu ,&nbsp;Bowei Pu ,&nbsp;Qingbao Wang ,&nbsp;Ruofang Wang ,&nbsp;Maxim Avdeev ,&nbsp;Siqi Shi","doi":"10.1016/j.actamat.2025.121628","DOIUrl":null,"url":null,"abstract":"<div><div>Crystalline solids, especially ion conductors, often exhibit site-occupancy disorder, including partial occupation of the mobile ion sublattice or mixed occupation of the framework sublattice. The key to predicting physical properties, such as ionic transport barrier, lies in identifying appropriate configurations that can reflect the local features of site-occupancy disorder. However, as supercell size and compositional complexity increase, existing configuration search methods suffer from low search efficiency and insufficient universality. Here, we propose a multi-strategy configuration search method called MCTSGT, where the search space is represented as a tree structure using Monte Carlo Tree Search (MCTS) and equivalent nodes are dynamically pruned using the distance matrix of graph theory (GT) to improve search efficiency. Two alternative search strategies, Warren-Cowley short-range order parameters and configurational ground-state energy, are provided to enhance the adaptability of MCTSGT for different systems. Applied to nine typical disordered structures, MCTSGT achieves a maximum search efficiency improvement of 14% compared to Monte Carlo simulated annealing. Furthermore, energy barriers of obtained configurations via the bond valence site energy (BVSE) method exhibit a consistent trend with experimental studies. Our work provides important insights into machine-learning modeling of disordered structures and contributes to materials discovery across a broader compositional space.</div></div>","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"302 ","pages":"Article 121628"},"PeriodicalIF":9.3000,"publicationDate":"2025-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MCTSGT: A graph theory-based Monte Carlo tree strategy for configuration search in disordered structures\",\"authors\":\"Bing He ,&nbsp;Zhicong Lai ,&nbsp;Da Wang ,&nbsp;Xiaotong Liu ,&nbsp;Yue Liu ,&nbsp;Miao Xu ,&nbsp;Bowei Pu ,&nbsp;Qingbao Wang ,&nbsp;Ruofang Wang ,&nbsp;Maxim Avdeev ,&nbsp;Siqi Shi\",\"doi\":\"10.1016/j.actamat.2025.121628\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Crystalline solids, especially ion conductors, often exhibit site-occupancy disorder, including partial occupation of the mobile ion sublattice or mixed occupation of the framework sublattice. The key to predicting physical properties, such as ionic transport barrier, lies in identifying appropriate configurations that can reflect the local features of site-occupancy disorder. However, as supercell size and compositional complexity increase, existing configuration search methods suffer from low search efficiency and insufficient universality. Here, we propose a multi-strategy configuration search method called MCTSGT, where the search space is represented as a tree structure using Monte Carlo Tree Search (MCTS) and equivalent nodes are dynamically pruned using the distance matrix of graph theory (GT) to improve search efficiency. Two alternative search strategies, Warren-Cowley short-range order parameters and configurational ground-state energy, are provided to enhance the adaptability of MCTSGT for different systems. Applied to nine typical disordered structures, MCTSGT achieves a maximum search efficiency improvement of 14% compared to Monte Carlo simulated annealing. Furthermore, energy barriers of obtained configurations via the bond valence site energy (BVSE) method exhibit a consistent trend with experimental studies. Our work provides important insights into machine-learning modeling of disordered structures and contributes to materials discovery across a broader compositional space.</div></div>\",\"PeriodicalId\":238,\"journal\":{\"name\":\"Acta Materialia\",\"volume\":\"302 \",\"pages\":\"Article 121628\"},\"PeriodicalIF\":9.3000,\"publicationDate\":\"2025-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Materialia\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359645425009140\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359645425009140","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

结晶固体,特别是离子导体,经常表现出位置占用紊乱,包括部分占据移动离子亚晶格或混合占据框架亚晶格。预测物理性质(如离子输运势垒)的关键在于确定能够反映位点占用障碍局部特征的适当构型。然而,随着超级单体规模和组成复杂性的增加,现有的构型搜索方法存在搜索效率低、通用性不足的问题。本文提出了一种名为MCTSGT的多策略配置搜索方法,该方法使用蒙特卡罗树搜索(MCTS)将搜索空间表示为树结构,并使用图论(GT)的距离矩阵动态修剪等效节点以提高搜索效率。为了提高MCTSGT对不同系统的适应性,提出了Warren-Cowley近程序参数和构型基态能量两种备选搜索策略。将MCTSGT应用于9种典型的无序结构,与蒙特卡罗模拟退火相比,搜索效率最大提高了14%。此外,通过键价位能(BVSE)方法得到的构型的能垒与实验结果一致。我们的工作为无序结构的机器学习建模提供了重要的见解,并有助于在更广泛的组成空间中发现材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MCTSGT: A graph theory-based Monte Carlo tree strategy for configuration search in disordered structures
Crystalline solids, especially ion conductors, often exhibit site-occupancy disorder, including partial occupation of the mobile ion sublattice or mixed occupation of the framework sublattice. The key to predicting physical properties, such as ionic transport barrier, lies in identifying appropriate configurations that can reflect the local features of site-occupancy disorder. However, as supercell size and compositional complexity increase, existing configuration search methods suffer from low search efficiency and insufficient universality. Here, we propose a multi-strategy configuration search method called MCTSGT, where the search space is represented as a tree structure using Monte Carlo Tree Search (MCTS) and equivalent nodes are dynamically pruned using the distance matrix of graph theory (GT) to improve search efficiency. Two alternative search strategies, Warren-Cowley short-range order parameters and configurational ground-state energy, are provided to enhance the adaptability of MCTSGT for different systems. Applied to nine typical disordered structures, MCTSGT achieves a maximum search efficiency improvement of 14% compared to Monte Carlo simulated annealing. Furthermore, energy barriers of obtained configurations via the bond valence site energy (BVSE) method exhibit a consistent trend with experimental studies. Our work provides important insights into machine-learning modeling of disordered structures and contributes to materials discovery across a broader compositional space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Materialia
Acta Materialia 工程技术-材料科学:综合
CiteScore
16.10
自引率
8.50%
发文量
801
审稿时长
53 days
期刊介绍: Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信