双层氮化镓奈米片:未来十年潜在的电晶体通道

IF 2.6 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Qiang Hu , Hong Li , Fengbin Liu , Jing Lu
{"title":"双层氮化镓奈米片:未来十年潜在的电晶体通道","authors":"Qiang Hu ,&nbsp;Hong Li ,&nbsp;Fengbin Liu ,&nbsp;Jing Lu","doi":"10.1016/j.physleta.2025.131077","DOIUrl":null,"url":null,"abstract":"<div><div>Gallium Nitride (GaN) is a promising third-generation semiconductor, and H-passivated buckled bilayer GaN exhibits unique electronic characters. Bilayer GaN metal-oxide-semiconductor field-effect transistors (MOSFETs) with a 5-nm gate length are evaluated using <em>ab initio</em> quantum transport simulations. Device performance is highly sensitive to electrode doping concentrations and underlap lengths. Specifically, the best-performing <em>n</em>-/<em>p</em>-type bilayer GaN MOSFETs demonstrate on-state currents of 1059/689 and 2037/1247 µA/µm, delay times of 0.053/0.078 and 0.047/0.073 ps, and power dissipations of 0.033/0.032 and 0.057/0.054 fJ/μm for low-power and high-performance applications, respectively. These performance metrics exceed the International Roadmap for Devices and Systems (IRDS) targets for the ‘5am eq’ technology node. Notably, bilayer GaN MOSFETs outperform monolayer MoS₂, InSe, InP, silicane, and germanane in terms of on-state current under identical operating conditions. Overall, bilayer GaN offers significant advantages as a next-generation transistor channel material and is well suited for operation under extreme environmental conditions due to the intrinsic properties of GaN.</div></div>","PeriodicalId":20172,"journal":{"name":"Physics Letters A","volume":"563 ","pages":"Article 131077"},"PeriodicalIF":2.6000,"publicationDate":"2025-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bilayer GaN nanosheet: a potential transistor channel for next decade\",\"authors\":\"Qiang Hu ,&nbsp;Hong Li ,&nbsp;Fengbin Liu ,&nbsp;Jing Lu\",\"doi\":\"10.1016/j.physleta.2025.131077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Gallium Nitride (GaN) is a promising third-generation semiconductor, and H-passivated buckled bilayer GaN exhibits unique electronic characters. Bilayer GaN metal-oxide-semiconductor field-effect transistors (MOSFETs) with a 5-nm gate length are evaluated using <em>ab initio</em> quantum transport simulations. Device performance is highly sensitive to electrode doping concentrations and underlap lengths. Specifically, the best-performing <em>n</em>-/<em>p</em>-type bilayer GaN MOSFETs demonstrate on-state currents of 1059/689 and 2037/1247 µA/µm, delay times of 0.053/0.078 and 0.047/0.073 ps, and power dissipations of 0.033/0.032 and 0.057/0.054 fJ/μm for low-power and high-performance applications, respectively. These performance metrics exceed the International Roadmap for Devices and Systems (IRDS) targets for the ‘5am eq’ technology node. Notably, bilayer GaN MOSFETs outperform monolayer MoS₂, InSe, InP, silicane, and germanane in terms of on-state current under identical operating conditions. Overall, bilayer GaN offers significant advantages as a next-generation transistor channel material and is well suited for operation under extreme environmental conditions due to the intrinsic properties of GaN.</div></div>\",\"PeriodicalId\":20172,\"journal\":{\"name\":\"Physics Letters A\",\"volume\":\"563 \",\"pages\":\"Article 131077\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics Letters A\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0375960125008576\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Letters A","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0375960125008576","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

氮化镓(GaN)是一种很有发展前途的第三代半导体材料,而氢钝化的双层氮化镓具有独特的电子特性。利用从头算量子输运模拟对栅极长度为5nm的双层GaN金属氧化物半导体场效应晶体管(mosfet)进行了评价。器件性能对电极掺杂浓度和搭接长度高度敏感。具体来说,性能最佳的n /p型双层GaN mosfet在低功耗和高性能应用中的导通电流分别为1059/689和2037/1247µA/µm,延迟时间分别为0.053/0.078和0.047/0.073 ps,功耗分别为0.033/0.032和0.057/0.054 fJ/μm。这些性能指标超过了“5am eq”技术节点的国际设备和系统路线图(IRDS)目标。值得注意的是,在相同的工作条件下,双层GaN mosfet在导通电流方面优于单层MoS 2, InSe, InP,硅烷和日耳曼烷。总体而言,双层GaN作为下一代晶体管沟道材料具有显著优势,并且由于GaN的固有特性,非常适合在极端环境条件下工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bilayer GaN nanosheet: a potential transistor channel for next decade
Gallium Nitride (GaN) is a promising third-generation semiconductor, and H-passivated buckled bilayer GaN exhibits unique electronic characters. Bilayer GaN metal-oxide-semiconductor field-effect transistors (MOSFETs) with a 5-nm gate length are evaluated using ab initio quantum transport simulations. Device performance is highly sensitive to electrode doping concentrations and underlap lengths. Specifically, the best-performing n-/p-type bilayer GaN MOSFETs demonstrate on-state currents of 1059/689 and 2037/1247 µA/µm, delay times of 0.053/0.078 and 0.047/0.073 ps, and power dissipations of 0.033/0.032 and 0.057/0.054 fJ/μm for low-power and high-performance applications, respectively. These performance metrics exceed the International Roadmap for Devices and Systems (IRDS) targets for the ‘5am eq’ technology node. Notably, bilayer GaN MOSFETs outperform monolayer MoS₂, InSe, InP, silicane, and germanane in terms of on-state current under identical operating conditions. Overall, bilayer GaN offers significant advantages as a next-generation transistor channel material and is well suited for operation under extreme environmental conditions due to the intrinsic properties of GaN.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics Letters A
Physics Letters A 物理-物理:综合
CiteScore
5.10
自引率
3.80%
发文量
493
审稿时长
30 days
期刊介绍: Physics Letters A offers an exciting publication outlet for novel and frontier physics. It encourages the submission of new research on: condensed matter physics, theoretical physics, nonlinear science, statistical physics, mathematical and computational physics, general and cross-disciplinary physics (including foundations), atomic, molecular and cluster physics, plasma and fluid physics, optical physics, biological physics and nanoscience. No articles on High Energy and Nuclear Physics are published in Physics Letters A. The journal''s high standard and wide dissemination ensures a broad readership amongst the physics community. Rapid publication times and flexible length restrictions give Physics Letters A the edge over other journals in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信