Sombor和Sombor能量指数的谱界:神经递质分子网络的图论研究。

IF 1.9 4区 生物学 Q2 BIOLOGY
Nalini Devi K. , Srinivasa G.
{"title":"Sombor和Sombor能量指数的谱界:神经递质分子网络的图论研究。","authors":"Nalini Devi K. ,&nbsp;Srinivasa G.","doi":"10.1016/j.biosystems.2025.105620","DOIUrl":null,"url":null,"abstract":"<div><div>This paper applies the recently introduced Sombor index and its spectral extension, the Sombor energy, to model and analyze the structural complexity of neurotransmitter molecular graphs. Let <span><math><mi>G</mi></math></span> denote a molecular graph whose vertices and edges correspond to atoms and covalent bonds, respectively. For each <span><math><mi>G</mi></math></span>, we compute <span><math><mrow><mi>S</mi><mi>O</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>S</mi><mi>O</mi><mi>E</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, and derive degree-based, spectral-radius, and Frobenius-norm bounds to quantify molecular irregularity. Unlike traditional indices such as Zagreb or Wiener, Sombor descriptors incorporate both degree heterogeneity and geometric weighting, offering refined sensitivity to branching and aromaticity. Comparative analysis across inhibitory (glycine, GABA) and excitatory or modulatory (dopamine, serotonin, norepinephrine) neurotransmitters reveals that higher Sombor measures correspond to greater structural and functional complexity. These results confirm that Sombor-based descriptors capture biologically interpretable differences in molecular organization. The study thereby extends spectral graph theory to neurochemical systems, providing a quantitative framework for cheminformatics, drug design, and functional classification of neurotransmitters.</div></div>","PeriodicalId":50730,"journal":{"name":"Biosystems","volume":"258 ","pages":"Article 105620"},"PeriodicalIF":1.9000,"publicationDate":"2025-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectral bounds for Sombor and Sombor energy indices: A graph-theoretic study of neurotransmitter molecular networks\",\"authors\":\"Nalini Devi K. ,&nbsp;Srinivasa G.\",\"doi\":\"10.1016/j.biosystems.2025.105620\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper applies the recently introduced Sombor index and its spectral extension, the Sombor energy, to model and analyze the structural complexity of neurotransmitter molecular graphs. Let <span><math><mi>G</mi></math></span> denote a molecular graph whose vertices and edges correspond to atoms and covalent bonds, respectively. For each <span><math><mi>G</mi></math></span>, we compute <span><math><mrow><mi>S</mi><mi>O</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>S</mi><mi>O</mi><mi>E</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, and derive degree-based, spectral-radius, and Frobenius-norm bounds to quantify molecular irregularity. Unlike traditional indices such as Zagreb or Wiener, Sombor descriptors incorporate both degree heterogeneity and geometric weighting, offering refined sensitivity to branching and aromaticity. Comparative analysis across inhibitory (glycine, GABA) and excitatory or modulatory (dopamine, serotonin, norepinephrine) neurotransmitters reveals that higher Sombor measures correspond to greater structural and functional complexity. These results confirm that Sombor-based descriptors capture biologically interpretable differences in molecular organization. The study thereby extends spectral graph theory to neurochemical systems, providing a quantitative framework for cheminformatics, drug design, and functional classification of neurotransmitters.</div></div>\",\"PeriodicalId\":50730,\"journal\":{\"name\":\"Biosystems\",\"volume\":\"258 \",\"pages\":\"Article 105620\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosystems\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0303264725002308\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosystems","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0303264725002308","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文应用近年来引入的Sombor指数及其谱扩展Sombor能量来模拟和分析神经递质分子图的结构复杂性。设G表示一个分子图,其顶点和边分别对应于原子和共价键。对于每个G,我们计算SO(G)和SOE(G),并推导基于度的、光谱半径和frobenius -范数界限,以量化分子的不规则性。与传统的指数如Zagreb或Wiener不同,Sombor描述符结合了程度异质性和几何加权,提供了对分支和芳香性的精细敏感性。抑制性神经递质(甘氨酸、GABA)和兴奋性或调节性神经递质(多巴胺、血清素、去甲肾上腺素)的对比分析表明,Sombor水平越高,结构和功能的复杂性越高。这些结果证实,基于sombor的描述符捕获了分子组织中生物学上可解释的差异。因此,该研究将谱图理论扩展到神经化学系统,为化学信息学、药物设计和神经递质功能分类提供了定量框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spectral bounds for Sombor and Sombor energy indices: A graph-theoretic study of neurotransmitter molecular networks
This paper applies the recently introduced Sombor index and its spectral extension, the Sombor energy, to model and analyze the structural complexity of neurotransmitter molecular graphs. Let G denote a molecular graph whose vertices and edges correspond to atoms and covalent bonds, respectively. For each G, we compute SO(G) and SOE(G), and derive degree-based, spectral-radius, and Frobenius-norm bounds to quantify molecular irregularity. Unlike traditional indices such as Zagreb or Wiener, Sombor descriptors incorporate both degree heterogeneity and geometric weighting, offering refined sensitivity to branching and aromaticity. Comparative analysis across inhibitory (glycine, GABA) and excitatory or modulatory (dopamine, serotonin, norepinephrine) neurotransmitters reveals that higher Sombor measures correspond to greater structural and functional complexity. These results confirm that Sombor-based descriptors capture biologically interpretable differences in molecular organization. The study thereby extends spectral graph theory to neurochemical systems, providing a quantitative framework for cheminformatics, drug design, and functional classification of neurotransmitters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biosystems
Biosystems 生物-生物学
CiteScore
3.70
自引率
18.80%
发文量
129
审稿时长
34 days
期刊介绍: BioSystems encourages experimental, computational, and theoretical articles that link biology, evolutionary thinking, and the information processing sciences. The link areas form a circle that encompasses the fundamental nature of biological information processing, computational modeling of complex biological systems, evolutionary models of computation, the application of biological principles to the design of novel computing systems, and the use of biomolecular materials to synthesize artificial systems that capture essential principles of natural biological information processing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信