Javed Rashid, Turke Althobaiti, Alina Shabbir, Muhammad Shoaib Saleem, Muhammad Faheem
{"title":"使用ResNet-18优化皮肤癌分类:3D全身摄影(3D- tbp)的可扩展方法","authors":"Javed Rashid, Turke Althobaiti, Alina Shabbir, Muhammad Shoaib Saleem, Muhammad Faheem","doi":"10.1002/ima.70224","DOIUrl":null,"url":null,"abstract":"<p>Skin cancer, particularly melanoma, remains a major public health challenge because of its rising incidence and mortality rates. Traditional methods of diagnosis, like dermoscopy and biopsies, are invasive, time-consuming, and highly dependent on clinical experience. Furthermore, previous research has predominantly focused on 2D dermoscopic images, which do not capture important volumetric information required for the proper evaluation of the injury. This work introduces a new deep learning architecture based on the ResNet-18 model, augmented by transfer learning, for binary classification of malignant and benign skin lesions. The model is trained on the ISIC 2024 3D Total Body Photography dataset and uses pre-trained ImageNet weights to enable effective feature extraction. To counter the dataset's natural class imbalance and minimize overfitting, the model uses sophisticated data augmentation and oversampling methods. The suggested model boasts a staggering classification accuracy of 99.82%, surpassing many other 2D-based alternatives. The utilization of 3D-TBP offers a strong diagnostic benefit by allowing volumetric lesion analysis, retaining spatial and depth features usually lost in the conventional 2D images. The findings validate the clinical feasibility of the method, presenting a scalable, noninvasive, and very accurate early detection and diagnosis of melanoma using 3D skin imaging.</p>","PeriodicalId":14027,"journal":{"name":"International Journal of Imaging Systems and Technology","volume":"35 6","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ima.70224","citationCount":"0","resultStr":"{\"title\":\"Optimizing Skin Cancer Classification With ResNet-18: A Scalable Approach With 3D Total Body Photography (3D-TBP)\",\"authors\":\"Javed Rashid, Turke Althobaiti, Alina Shabbir, Muhammad Shoaib Saleem, Muhammad Faheem\",\"doi\":\"10.1002/ima.70224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Skin cancer, particularly melanoma, remains a major public health challenge because of its rising incidence and mortality rates. Traditional methods of diagnosis, like dermoscopy and biopsies, are invasive, time-consuming, and highly dependent on clinical experience. Furthermore, previous research has predominantly focused on 2D dermoscopic images, which do not capture important volumetric information required for the proper evaluation of the injury. This work introduces a new deep learning architecture based on the ResNet-18 model, augmented by transfer learning, for binary classification of malignant and benign skin lesions. The model is trained on the ISIC 2024 3D Total Body Photography dataset and uses pre-trained ImageNet weights to enable effective feature extraction. To counter the dataset's natural class imbalance and minimize overfitting, the model uses sophisticated data augmentation and oversampling methods. The suggested model boasts a staggering classification accuracy of 99.82%, surpassing many other 2D-based alternatives. The utilization of 3D-TBP offers a strong diagnostic benefit by allowing volumetric lesion analysis, retaining spatial and depth features usually lost in the conventional 2D images. The findings validate the clinical feasibility of the method, presenting a scalable, noninvasive, and very accurate early detection and diagnosis of melanoma using 3D skin imaging.</p>\",\"PeriodicalId\":14027,\"journal\":{\"name\":\"International Journal of Imaging Systems and Technology\",\"volume\":\"35 6\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ima.70224\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Imaging Systems and Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ima.70224\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Imaging Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ima.70224","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Optimizing Skin Cancer Classification With ResNet-18: A Scalable Approach With 3D Total Body Photography (3D-TBP)
Skin cancer, particularly melanoma, remains a major public health challenge because of its rising incidence and mortality rates. Traditional methods of diagnosis, like dermoscopy and biopsies, are invasive, time-consuming, and highly dependent on clinical experience. Furthermore, previous research has predominantly focused on 2D dermoscopic images, which do not capture important volumetric information required for the proper evaluation of the injury. This work introduces a new deep learning architecture based on the ResNet-18 model, augmented by transfer learning, for binary classification of malignant and benign skin lesions. The model is trained on the ISIC 2024 3D Total Body Photography dataset and uses pre-trained ImageNet weights to enable effective feature extraction. To counter the dataset's natural class imbalance and minimize overfitting, the model uses sophisticated data augmentation and oversampling methods. The suggested model boasts a staggering classification accuracy of 99.82%, surpassing many other 2D-based alternatives. The utilization of 3D-TBP offers a strong diagnostic benefit by allowing volumetric lesion analysis, retaining spatial and depth features usually lost in the conventional 2D images. The findings validate the clinical feasibility of the method, presenting a scalable, noninvasive, and very accurate early detection and diagnosis of melanoma using 3D skin imaging.
期刊介绍:
The International Journal of Imaging Systems and Technology (IMA) is a forum for the exchange of ideas and results relevant to imaging systems, including imaging physics and informatics. The journal covers all imaging modalities in humans and animals.
IMA accepts technically sound and scientifically rigorous research in the interdisciplinary field of imaging, including relevant algorithmic research and hardware and software development, and their applications relevant to medical research. The journal provides a platform to publish original research in structural and functional imaging.
The journal is also open to imaging studies of the human body and on animals that describe novel diagnostic imaging and analyses methods. Technical, theoretical, and clinical research in both normal and clinical populations is encouraged. Submissions describing methods, software, databases, replication studies as well as negative results are also considered.
The scope of the journal includes, but is not limited to, the following in the context of biomedical research:
Imaging and neuro-imaging modalities: structural MRI, functional MRI, PET, SPECT, CT, ultrasound, EEG, MEG, NIRS etc.;
Neuromodulation and brain stimulation techniques such as TMS and tDCS;
Software and hardware for imaging, especially related to human and animal health;
Image segmentation in normal and clinical populations;
Pattern analysis and classification using machine learning techniques;
Computational modeling and analysis;
Brain connectivity and connectomics;
Systems-level characterization of brain function;
Neural networks and neurorobotics;
Computer vision, based on human/animal physiology;
Brain-computer interface (BCI) technology;
Big data, databasing and data mining.