{"title":"通过三维结构和凝胶动力学增强地聚合物-石墨烯气凝胶复合材料的协同导热性","authors":"Wentao Sheng, Lei Chen, Fan Zhang, Hailong Hu","doi":"10.1002/cnl2.70067","DOIUrl":null,"url":null,"abstract":"<p>To overcome the inherent drawback of low thermal conductivity (0.3 W/m·K) in conventional thermoplastic polymers, this work reports a scalable synthesis of cost-effective, thermally stable geopolymers using waste fly ash (FA) as a precursor material. By synergistically tailoring the Si/Al ratio and incorporating graphene oxide, a three-dimensional percolative thermal conductive network is engineered to dramatically enhance the thermal conductivity of geopolymer–graphene aerogel composites. Experimental results show that optimizing the Si/Al ratio effectively improves the matrix performance. With the optimal Si/Al ratios of 1.35 and 1.50, the thermal conductivities of the geopolymer reach up to 1.03 and 1.14 W/m·K, respectively, representing a nearly 245% increase over conventional polymers. Notably, the further introduction of ultra-low content of thermal conductive graphene aerogel filler (0.34 wt%) with a regulated Si/Al ratio of 1.64 results in a 34.2% increase in the thermal conductivity of the composite, achieving an exceptional specific improvement (thermal conductivity improvement/filler content) of 100.7%. Moreover, these composites maintain 75.5% of their initial conductivity at high temperature (100°C), demonstrating robust thermal stability. This breakthrough enables efficient thermal management for miniaturized electronic systems using ultra-low loading of high-performance fillers.</p>","PeriodicalId":100214,"journal":{"name":"Carbon Neutralization","volume":"4 6","pages":""},"PeriodicalIF":12.0000,"publicationDate":"2025-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.70067","citationCount":"0","resultStr":"{\"title\":\"Synergistic Thermal Conductivity Enhancement in Geopolymer–Graphene Aerogel Composites Through 3D Structuring and Gelation Kinetics\",\"authors\":\"Wentao Sheng, Lei Chen, Fan Zhang, Hailong Hu\",\"doi\":\"10.1002/cnl2.70067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>To overcome the inherent drawback of low thermal conductivity (0.3 W/m·K) in conventional thermoplastic polymers, this work reports a scalable synthesis of cost-effective, thermally stable geopolymers using waste fly ash (FA) as a precursor material. By synergistically tailoring the Si/Al ratio and incorporating graphene oxide, a three-dimensional percolative thermal conductive network is engineered to dramatically enhance the thermal conductivity of geopolymer–graphene aerogel composites. Experimental results show that optimizing the Si/Al ratio effectively improves the matrix performance. With the optimal Si/Al ratios of 1.35 and 1.50, the thermal conductivities of the geopolymer reach up to 1.03 and 1.14 W/m·K, respectively, representing a nearly 245% increase over conventional polymers. Notably, the further introduction of ultra-low content of thermal conductive graphene aerogel filler (0.34 wt%) with a regulated Si/Al ratio of 1.64 results in a 34.2% increase in the thermal conductivity of the composite, achieving an exceptional specific improvement (thermal conductivity improvement/filler content) of 100.7%. Moreover, these composites maintain 75.5% of their initial conductivity at high temperature (100°C), demonstrating robust thermal stability. This breakthrough enables efficient thermal management for miniaturized electronic systems using ultra-low loading of high-performance fillers.</p>\",\"PeriodicalId\":100214,\"journal\":{\"name\":\"Carbon Neutralization\",\"volume\":\"4 6\",\"pages\":\"\"},\"PeriodicalIF\":12.0000,\"publicationDate\":\"2025-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.70067\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Neutralization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cnl2.70067\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Neutralization","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnl2.70067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Synergistic Thermal Conductivity Enhancement in Geopolymer–Graphene Aerogel Composites Through 3D Structuring and Gelation Kinetics
To overcome the inherent drawback of low thermal conductivity (0.3 W/m·K) in conventional thermoplastic polymers, this work reports a scalable synthesis of cost-effective, thermally stable geopolymers using waste fly ash (FA) as a precursor material. By synergistically tailoring the Si/Al ratio and incorporating graphene oxide, a three-dimensional percolative thermal conductive network is engineered to dramatically enhance the thermal conductivity of geopolymer–graphene aerogel composites. Experimental results show that optimizing the Si/Al ratio effectively improves the matrix performance. With the optimal Si/Al ratios of 1.35 and 1.50, the thermal conductivities of the geopolymer reach up to 1.03 and 1.14 W/m·K, respectively, representing a nearly 245% increase over conventional polymers. Notably, the further introduction of ultra-low content of thermal conductive graphene aerogel filler (0.34 wt%) with a regulated Si/Al ratio of 1.64 results in a 34.2% increase in the thermal conductivity of the composite, achieving an exceptional specific improvement (thermal conductivity improvement/filler content) of 100.7%. Moreover, these composites maintain 75.5% of their initial conductivity at high temperature (100°C), demonstrating robust thermal stability. This breakthrough enables efficient thermal management for miniaturized electronic systems using ultra-low loading of high-performance fillers.