J. Andres Diaz-Pace, Daniele Di Pompeo, Michele Tucci
{"title":"搜索预算在基于模型的软件重构优化中的作用","authors":"J. Andres Diaz-Pace, Daniele Di Pompeo, Michele Tucci","doi":"10.1007/s10515-025-00564-y","DOIUrl":null,"url":null,"abstract":"<div><p>Software model optimization is a process that automatically generates design alternatives aimed at improving quantifiable non-functional properties of software systems, such as performance and reliability. Multi-objective evolutionary algorithms effectively help designers identify trade-offs among the desired non-functional properties. To reduce the use of computational resources, this work examines the impact of implementing a search budget to limit the search for design alternatives. In particular, we analyze how time budgets affect the quality of Pareto fronts by utilizing quality indicators and exploring the structural features of the generated design alternatives. This study identifies distinct behavioral differences among evolutionary algorithms when a search budget is implemented. It further reveals that design alternatives generated under a budget are structurally different from those produced without one. Additionally, we offer recommendations for designers on selecting algorithms in relation to time constraints, thereby facilitating the effective application of automated refactoring to improve non-functional properties.</p></div>","PeriodicalId":55414,"journal":{"name":"Automated Software Engineering","volume":"33 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10515-025-00564-y.pdf","citationCount":"0","resultStr":"{\"title\":\"On the role of search budgets in model-based software refactoring optimization\",\"authors\":\"J. Andres Diaz-Pace, Daniele Di Pompeo, Michele Tucci\",\"doi\":\"10.1007/s10515-025-00564-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Software model optimization is a process that automatically generates design alternatives aimed at improving quantifiable non-functional properties of software systems, such as performance and reliability. Multi-objective evolutionary algorithms effectively help designers identify trade-offs among the desired non-functional properties. To reduce the use of computational resources, this work examines the impact of implementing a search budget to limit the search for design alternatives. In particular, we analyze how time budgets affect the quality of Pareto fronts by utilizing quality indicators and exploring the structural features of the generated design alternatives. This study identifies distinct behavioral differences among evolutionary algorithms when a search budget is implemented. It further reveals that design alternatives generated under a budget are structurally different from those produced without one. Additionally, we offer recommendations for designers on selecting algorithms in relation to time constraints, thereby facilitating the effective application of automated refactoring to improve non-functional properties.</p></div>\",\"PeriodicalId\":55414,\"journal\":{\"name\":\"Automated Software Engineering\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10515-025-00564-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automated Software Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10515-025-00564-y\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automated Software Engineering","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10515-025-00564-y","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
On the role of search budgets in model-based software refactoring optimization
Software model optimization is a process that automatically generates design alternatives aimed at improving quantifiable non-functional properties of software systems, such as performance and reliability. Multi-objective evolutionary algorithms effectively help designers identify trade-offs among the desired non-functional properties. To reduce the use of computational resources, this work examines the impact of implementing a search budget to limit the search for design alternatives. In particular, we analyze how time budgets affect the quality of Pareto fronts by utilizing quality indicators and exploring the structural features of the generated design alternatives. This study identifies distinct behavioral differences among evolutionary algorithms when a search budget is implemented. It further reveals that design alternatives generated under a budget are structurally different from those produced without one. Additionally, we offer recommendations for designers on selecting algorithms in relation to time constraints, thereby facilitating the effective application of automated refactoring to improve non-functional properties.
期刊介绍:
This journal details research, tutorial papers, survey and accounts of significant industrial experience in the foundations, techniques, tools and applications of automated software engineering technology. This includes the study of techniques for constructing, understanding, adapting, and modeling software artifacts and processes.
Coverage in Automated Software Engineering examines both automatic systems and collaborative systems as well as computational models of human software engineering activities. In addition, it presents knowledge representations and artificial intelligence techniques applicable to automated software engineering, and formal techniques that support or provide theoretical foundations. The journal also includes reviews of books, software, conferences and workshops.