lcv型算子的均匀化

IF 0.7 4区 数学 Q3 MATHEMATICS
Elena Zhizhina, Andrey Piatnitski, Vladimir Sloushch, Tatiana Suslina
{"title":"lcv型算子的均匀化","authors":"Elena Zhizhina,&nbsp;Andrey Piatnitski,&nbsp;Vladimir Sloushch,&nbsp;Tatiana Suslina","doi":"10.1134/S1234567825030036","DOIUrl":null,"url":null,"abstract":"<p> In <span>\\(L_2(\\mathbb R^d)\\)</span>, we consider a selfadjoint operator <span>\\({\\mathbb A}_\\varepsilon\\)</span>, <span>\\(\\varepsilon &gt;0\\)</span>, of the form </p><p> where <span>\\(0&lt; \\alpha &lt; 2\\)</span>. It is assumed that a function <span>\\(\\mu(\\mathbf{x},\\mathbf{y})\\)</span> is bounded, positive definite, periodic in each variable, and is such that <span>\\(\\mu(\\mathbf{x},\\mathbf{y})=\\mu(\\mathbf{y},\\mathbf{x})\\)</span>. A rigorous definition of the operator <span>\\({\\mathbb A}_\\varepsilon\\)</span> is given in terms of the corresponding quadratic form. It is proved that the resolvent <span>\\(({\\mathbb A}_\\varepsilon+I)^{-1}\\)</span> converges in the operator norm on <span>\\(L_2(\\mathbb R^d)\\)</span> to the operator <span>\\(({\\mathbb A}^0+I)^{-1}\\)</span> as <span>\\(\\varepsilon\\to 0\\)</span>. Here, <span>\\({\\mathbb A}^0\\)</span> is an effective operator of the same form with the constant coefficient <span>\\(\\mu^0\\)</span> equal to the mean value of <span>\\(\\mu(\\mathbf{x},\\mathbf{y})\\)</span>. We obtain an error estimate of order <span>\\(O(\\varepsilon^\\alpha)\\)</span> for <span>\\(0&lt; \\alpha &lt; 1\\)</span>, <span>\\(O(\\varepsilon (1+| \\operatorname{ln} \\varepsilon|)^2)\\)</span> for <span>\\( \\alpha=1\\)</span>, and <span>\\(O(\\varepsilon^{2- \\alpha})\\)</span> for <span>\\(1&lt; \\alpha &lt; 2\\)</span>. In the case where <span>\\(1&lt; \\alpha &lt; 2\\)</span>, the result is refined by taking the correctors into account. </p>","PeriodicalId":575,"journal":{"name":"Functional Analysis and Its Applications","volume":"59 3","pages":"251 - 257"},"PeriodicalIF":0.7000,"publicationDate":"2025-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Homogenization of the Lévy-type Operators\",\"authors\":\"Elena Zhizhina,&nbsp;Andrey Piatnitski,&nbsp;Vladimir Sloushch,&nbsp;Tatiana Suslina\",\"doi\":\"10.1134/S1234567825030036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> In <span>\\\\(L_2(\\\\mathbb R^d)\\\\)</span>, we consider a selfadjoint operator <span>\\\\({\\\\mathbb A}_\\\\varepsilon\\\\)</span>, <span>\\\\(\\\\varepsilon &gt;0\\\\)</span>, of the form </p><p> where <span>\\\\(0&lt; \\\\alpha &lt; 2\\\\)</span>. It is assumed that a function <span>\\\\(\\\\mu(\\\\mathbf{x},\\\\mathbf{y})\\\\)</span> is bounded, positive definite, periodic in each variable, and is such that <span>\\\\(\\\\mu(\\\\mathbf{x},\\\\mathbf{y})=\\\\mu(\\\\mathbf{y},\\\\mathbf{x})\\\\)</span>. A rigorous definition of the operator <span>\\\\({\\\\mathbb A}_\\\\varepsilon\\\\)</span> is given in terms of the corresponding quadratic form. It is proved that the resolvent <span>\\\\(({\\\\mathbb A}_\\\\varepsilon+I)^{-1}\\\\)</span> converges in the operator norm on <span>\\\\(L_2(\\\\mathbb R^d)\\\\)</span> to the operator <span>\\\\(({\\\\mathbb A}^0+I)^{-1}\\\\)</span> as <span>\\\\(\\\\varepsilon\\\\to 0\\\\)</span>. Here, <span>\\\\({\\\\mathbb A}^0\\\\)</span> is an effective operator of the same form with the constant coefficient <span>\\\\(\\\\mu^0\\\\)</span> equal to the mean value of <span>\\\\(\\\\mu(\\\\mathbf{x},\\\\mathbf{y})\\\\)</span>. We obtain an error estimate of order <span>\\\\(O(\\\\varepsilon^\\\\alpha)\\\\)</span> for <span>\\\\(0&lt; \\\\alpha &lt; 1\\\\)</span>, <span>\\\\(O(\\\\varepsilon (1+| \\\\operatorname{ln} \\\\varepsilon|)^2)\\\\)</span> for <span>\\\\( \\\\alpha=1\\\\)</span>, and <span>\\\\(O(\\\\varepsilon^{2- \\\\alpha})\\\\)</span> for <span>\\\\(1&lt; \\\\alpha &lt; 2\\\\)</span>. In the case where <span>\\\\(1&lt; \\\\alpha &lt; 2\\\\)</span>, the result is refined by taking the correctors into account. </p>\",\"PeriodicalId\":575,\"journal\":{\"name\":\"Functional Analysis and Its Applications\",\"volume\":\"59 3\",\"pages\":\"251 - 257\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Functional Analysis and Its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1234567825030036\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Analysis and Its Applications","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S1234567825030036","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在\(L_2(\mathbb R^d)\)中,我们考虑一个自伴随算子\({\mathbb A}_\varepsilon\), \(\varepsilon >0\),其形式为\(0< \alpha < 2\)。假设函数\(\mu(\mathbf{x},\mathbf{y})\)是有界的、正定的、周期的,并且\(\mu(\mathbf{x},\mathbf{y})=\mu(\mathbf{y},\mathbf{x})\)。用相应的二次型给出了算子\({\mathbb A}_\varepsilon\)的严格定义。证明了解\(({\mathbb A}_\varepsilon+I)^{-1}\)在\(L_2(\mathbb R^d)\)上的算子范数收敛到算子\(({\mathbb A}^0+I)^{-1}\)为\(\varepsilon\to 0\)。这里,\({\mathbb A}^0\)是一个形式相同的有效算子,其常系数\(\mu^0\)等于\(\mu(\mathbf{x},\mathbf{y})\)的平均值。我们得到了对\(0< \alpha < 1\)的顺序\(O(\varepsilon^\alpha)\),对\( \alpha=1\)的顺序\(O(\varepsilon (1+| \operatorname{ln} \varepsilon|)^2)\),对\(1< \alpha < 2\)的顺序\(O(\varepsilon^{2- \alpha})\)的误差估计。在\(1< \alpha < 2\)的情况下,通过考虑校正器来改进结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Homogenization of the Lévy-type Operators

In \(L_2(\mathbb R^d)\), we consider a selfadjoint operator \({\mathbb A}_\varepsilon\), \(\varepsilon >0\), of the form

where \(0< \alpha < 2\). It is assumed that a function \(\mu(\mathbf{x},\mathbf{y})\) is bounded, positive definite, periodic in each variable, and is such that \(\mu(\mathbf{x},\mathbf{y})=\mu(\mathbf{y},\mathbf{x})\). A rigorous definition of the operator \({\mathbb A}_\varepsilon\) is given in terms of the corresponding quadratic form. It is proved that the resolvent \(({\mathbb A}_\varepsilon+I)^{-1}\) converges in the operator norm on \(L_2(\mathbb R^d)\) to the operator \(({\mathbb A}^0+I)^{-1}\) as \(\varepsilon\to 0\). Here, \({\mathbb A}^0\) is an effective operator of the same form with the constant coefficient \(\mu^0\) equal to the mean value of \(\mu(\mathbf{x},\mathbf{y})\). We obtain an error estimate of order \(O(\varepsilon^\alpha)\) for \(0< \alpha < 1\), \(O(\varepsilon (1+| \operatorname{ln} \varepsilon|)^2)\) for \( \alpha=1\), and \(O(\varepsilon^{2- \alpha})\) for \(1< \alpha < 2\). In the case where \(1< \alpha < 2\), the result is refined by taking the correctors into account.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: Functional Analysis and Its Applications publishes current problems of functional analysis, including representation theory, theory of abstract and functional spaces, theory of operators, spectral theory, theory of operator equations, and the theory of normed rings. The journal also covers the most important applications of functional analysis in mathematics, mechanics, and theoretical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信