个体模式特征重要性的协同效应:在空气污染物和阿尔茨海默病中的应用

IF 5.6 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
M. Ontivero-Ortega, A. Fania, A. Lacalamita, R. Bellotti, A. Monaco, S. Stramaglia
{"title":"个体模式特征重要性的协同效应:在空气污染物和阿尔茨海默病中的应用","authors":"M. Ontivero-Ortega, A. Fania, A. Lacalamita, R. Bellotti, A. Monaco, S. Stramaglia","doi":"10.1016/j.chaos.2025.117425","DOIUrl":null,"url":null,"abstract":"Leveraging recent advances in the analysis of synergy and redundancy in systems of random variables, an adaptive version of the widely used metric Leave One Covariate Out (LOCO) has been recently proposed to quantify cooperative effects in feature importance (Hi-Fi), a key technique in explainable artificial intelligence (XAI), so as to disentangle high-order effects involving a particular input feature in regression problems. Differently from standard feature importance tools, where a single score measures the relevance of each feature, each feature is here characterized by three scores, a two-body (unique) score and higher-order scores (redundant and synergistic). This paper presents a framework to assign those three scores (unique, redundant, and synergistic) to each individual pattern of the data set, while comparing it with the well-known measure of feature importance named <ce:italic>Shapley effect</ce:italic>. To illustrate the potential of the proposed framework, we focus on a One-Health application: the relation between air pollutants and Alzheimer’s disease mortality rate. Our main result is the synergistic association between features related to <mml:math altimg=\"si1.svg\" display=\"inline\"><mml:msub><mml:mrow><mml:mi mathvariant=\"normal\">O</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msub></mml:math> and <mml:math altimg=\"si2.svg\" display=\"inline\"><mml:msub><mml:mrow><mml:mi mathvariant=\"normal\">NO</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:math> with mortality, especially in the provinces of Bergamo and Brescia; notably also the density of urban green areas displays synergistic influence with pollutants for the prediction of AD mortality. Our results place local Hi-Fi as a promising tool of wide applicability, which opens new perspectives for XAI as well as to analyze high-order relationships in complex systems.","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"40 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cooperative effects in feature importance of individual patterns: Application to air pollutants and Alzheimer’s disease\",\"authors\":\"M. Ontivero-Ortega, A. Fania, A. Lacalamita, R. Bellotti, A. Monaco, S. Stramaglia\",\"doi\":\"10.1016/j.chaos.2025.117425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Leveraging recent advances in the analysis of synergy and redundancy in systems of random variables, an adaptive version of the widely used metric Leave One Covariate Out (LOCO) has been recently proposed to quantify cooperative effects in feature importance (Hi-Fi), a key technique in explainable artificial intelligence (XAI), so as to disentangle high-order effects involving a particular input feature in regression problems. Differently from standard feature importance tools, where a single score measures the relevance of each feature, each feature is here characterized by three scores, a two-body (unique) score and higher-order scores (redundant and synergistic). This paper presents a framework to assign those three scores (unique, redundant, and synergistic) to each individual pattern of the data set, while comparing it with the well-known measure of feature importance named <ce:italic>Shapley effect</ce:italic>. To illustrate the potential of the proposed framework, we focus on a One-Health application: the relation between air pollutants and Alzheimer’s disease mortality rate. Our main result is the synergistic association between features related to <mml:math altimg=\\\"si1.svg\\\" display=\\\"inline\\\"><mml:msub><mml:mrow><mml:mi mathvariant=\\\"normal\\\">O</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msub></mml:math> and <mml:math altimg=\\\"si2.svg\\\" display=\\\"inline\\\"><mml:msub><mml:mrow><mml:mi mathvariant=\\\"normal\\\">NO</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:math> with mortality, especially in the provinces of Bergamo and Brescia; notably also the density of urban green areas displays synergistic influence with pollutants for the prediction of AD mortality. Our results place local Hi-Fi as a promising tool of wide applicability, which opens new perspectives for XAI as well as to analyze high-order relationships in complex systems.\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1016/j.chaos.2025.117425\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1016/j.chaos.2025.117425","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

利用随机变量系统中协同和冗余分析的最新进展,最近提出了广泛使用的度量Leave One Covariate Out (LOCO)的自适应版本,以量化特征重要性(Hi-Fi)中的合作效应,这是可解释人工智能(XAI)的一项关键技术,以便在回归问题中分解涉及特定输入特征的高阶效应。与标准的特征重要性工具不同,标准的特征重要性工具用单个分数衡量每个特征的相关性,这里的每个特征都有三个分数,一个两主体(唯一)分数和一个高阶分数(冗余和协同)。本文提出了一个框架,将这三个分数(唯一,冗余和协同)分配给数据集的每个单独模式,同时将其与众所周知的特征重要性度量Shapley效应进行比较。为了说明拟议框架的潜力,我们将重点放在一个健康应用上:空气污染物与阿尔茨海默病死亡率之间的关系。我们的主要结果是O3和NO2相关特征与死亡率之间的协同关联,特别是在贝加莫省和布雷西亚省;值得注意的是,城市绿地密度与污染物在预测阿尔茨海默病死亡率方面表现出协同影响。我们的研究结果将局部高保真音响作为一种具有广泛适用性的有前途的工具,这为XAI以及分析复杂系统中的高阶关系开辟了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cooperative effects in feature importance of individual patterns: Application to air pollutants and Alzheimer’s disease
Leveraging recent advances in the analysis of synergy and redundancy in systems of random variables, an adaptive version of the widely used metric Leave One Covariate Out (LOCO) has been recently proposed to quantify cooperative effects in feature importance (Hi-Fi), a key technique in explainable artificial intelligence (XAI), so as to disentangle high-order effects involving a particular input feature in regression problems. Differently from standard feature importance tools, where a single score measures the relevance of each feature, each feature is here characterized by three scores, a two-body (unique) score and higher-order scores (redundant and synergistic). This paper presents a framework to assign those three scores (unique, redundant, and synergistic) to each individual pattern of the data set, while comparing it with the well-known measure of feature importance named Shapley effect. To illustrate the potential of the proposed framework, we focus on a One-Health application: the relation between air pollutants and Alzheimer’s disease mortality rate. Our main result is the synergistic association between features related to O3 and NO2 with mortality, especially in the provinces of Bergamo and Brescia; notably also the density of urban green areas displays synergistic influence with pollutants for the prediction of AD mortality. Our results place local Hi-Fi as a promising tool of wide applicability, which opens new perspectives for XAI as well as to analyze high-order relationships in complex systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信