Lucas Sobrinho Lemos , Matheus Naia Fioretto , Isabelle Tenori Ribeiro , Luísa Annibal Barata , Flávia Alessandra Maciel , Felipe Leonardo Fagundes , Renato Mattos , Luiz Marcos Frediani Portela , João Miguel Barboza , Beatriz Souza de Oliveira , Keila Emílio de Almeida , Sérgio Alexandre Alcantara dos Santos , Clélia Akiko Hiruma Lima , José Ricardo de Arruda Miranda , Elena Zambrano , Luis Antonio Justulin
{"title":"母体蛋白限制通过破坏年轻雄性后代大鼠心脏发育形态生理促进心脏疾病。","authors":"Lucas Sobrinho Lemos , Matheus Naia Fioretto , Isabelle Tenori Ribeiro , Luísa Annibal Barata , Flávia Alessandra Maciel , Felipe Leonardo Fagundes , Renato Mattos , Luiz Marcos Frediani Portela , João Miguel Barboza , Beatriz Souza de Oliveira , Keila Emílio de Almeida , Sérgio Alexandre Alcantara dos Santos , Clélia Akiko Hiruma Lima , José Ricardo de Arruda Miranda , Elena Zambrano , Luis Antonio Justulin","doi":"10.1016/j.yexcr.2025.114795","DOIUrl":null,"url":null,"abstract":"<div><div>In recent years, cardiovascular diseases have been one of the leading causes of death worldwide. Epidemiological and experimental studies have linked adverse intrauterine conditions with an susceptibility to cardiovascular and metabolic diseases in subsequent generations, a concept related to the Developmental Origins of Health and Disease (DOHaD). Here, we evaluated the maternal protein restriction (MPR), and its harmful effects on the cardiac morphophysiology of offspring in early life. During gestation and lactation, the pregnant rats were divided into two groups: Control (CTR), which received a normoprotein diet (17 % protein), and Gestational and Lactational Low-Protein (GLLP), which received a hypoprotein diet (6 % protein). At postnatal day 21, the offspring were euthanized. There was a decrease in serum levels of IGF1, an increase in testosterone, and a decrease in several phenotypic parameters in the heart, such as the size of cardiomyocytes and their nuclei, collagen, reticular and elastic fibers, and mast cells in the GLLP group. We observed that MPR led to electrical disorders in the heart (bradycardia), in addition to impacting angiogenic proteins (high Aquaporin1 and PECAM-1), and proteins associated with the antioxidant system (low Peroxiredoxin 4 and high GSTpi expressions) in the GLLP group. These adverse effects early in life increase the risk of pathophysiological remodeling of the heart, with the potential for hypertension, hypertrophy, and cardiovascular disease later in life.</div></div>","PeriodicalId":12227,"journal":{"name":"Experimental cell research","volume":"453 1","pages":"Article 114795"},"PeriodicalIF":3.5000,"publicationDate":"2025-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maternal protein restriction promotes cardiac disorders by disrupting heart developmental morphophysiology in young male offspring rats\",\"authors\":\"Lucas Sobrinho Lemos , Matheus Naia Fioretto , Isabelle Tenori Ribeiro , Luísa Annibal Barata , Flávia Alessandra Maciel , Felipe Leonardo Fagundes , Renato Mattos , Luiz Marcos Frediani Portela , João Miguel Barboza , Beatriz Souza de Oliveira , Keila Emílio de Almeida , Sérgio Alexandre Alcantara dos Santos , Clélia Akiko Hiruma Lima , José Ricardo de Arruda Miranda , Elena Zambrano , Luis Antonio Justulin\",\"doi\":\"10.1016/j.yexcr.2025.114795\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In recent years, cardiovascular diseases have been one of the leading causes of death worldwide. Epidemiological and experimental studies have linked adverse intrauterine conditions with an susceptibility to cardiovascular and metabolic diseases in subsequent generations, a concept related to the Developmental Origins of Health and Disease (DOHaD). Here, we evaluated the maternal protein restriction (MPR), and its harmful effects on the cardiac morphophysiology of offspring in early life. During gestation and lactation, the pregnant rats were divided into two groups: Control (CTR), which received a normoprotein diet (17 % protein), and Gestational and Lactational Low-Protein (GLLP), which received a hypoprotein diet (6 % protein). At postnatal day 21, the offspring were euthanized. There was a decrease in serum levels of IGF1, an increase in testosterone, and a decrease in several phenotypic parameters in the heart, such as the size of cardiomyocytes and their nuclei, collagen, reticular and elastic fibers, and mast cells in the GLLP group. We observed that MPR led to electrical disorders in the heart (bradycardia), in addition to impacting angiogenic proteins (high Aquaporin1 and PECAM-1), and proteins associated with the antioxidant system (low Peroxiredoxin 4 and high GSTpi expressions) in the GLLP group. These adverse effects early in life increase the risk of pathophysiological remodeling of the heart, with the potential for hypertension, hypertrophy, and cardiovascular disease later in life.</div></div>\",\"PeriodicalId\":12227,\"journal\":{\"name\":\"Experimental cell research\",\"volume\":\"453 1\",\"pages\":\"Article 114795\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental cell research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0014482725003957\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental cell research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014482725003957","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Maternal protein restriction promotes cardiac disorders by disrupting heart developmental morphophysiology in young male offspring rats
In recent years, cardiovascular diseases have been one of the leading causes of death worldwide. Epidemiological and experimental studies have linked adverse intrauterine conditions with an susceptibility to cardiovascular and metabolic diseases in subsequent generations, a concept related to the Developmental Origins of Health and Disease (DOHaD). Here, we evaluated the maternal protein restriction (MPR), and its harmful effects on the cardiac morphophysiology of offspring in early life. During gestation and lactation, the pregnant rats were divided into two groups: Control (CTR), which received a normoprotein diet (17 % protein), and Gestational and Lactational Low-Protein (GLLP), which received a hypoprotein diet (6 % protein). At postnatal day 21, the offspring were euthanized. There was a decrease in serum levels of IGF1, an increase in testosterone, and a decrease in several phenotypic parameters in the heart, such as the size of cardiomyocytes and their nuclei, collagen, reticular and elastic fibers, and mast cells in the GLLP group. We observed that MPR led to electrical disorders in the heart (bradycardia), in addition to impacting angiogenic proteins (high Aquaporin1 and PECAM-1), and proteins associated with the antioxidant system (low Peroxiredoxin 4 and high GSTpi expressions) in the GLLP group. These adverse effects early in life increase the risk of pathophysiological remodeling of the heart, with the potential for hypertension, hypertrophy, and cardiovascular disease later in life.
期刊介绍:
Our scope includes but is not limited to areas such as: Chromosome biology; Chromatin and epigenetics; DNA repair; Gene regulation; Nuclear import-export; RNA processing; Non-coding RNAs; Organelle biology; The cytoskeleton; Intracellular trafficking; Cell-cell and cell-matrix interactions; Cell motility and migration; Cell proliferation; Cellular differentiation; Signal transduction; Programmed cell death.