模拟基因调控网络动态的python库。

IF 3.3 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS
Pradyumna Harlapur, Harshavardhan Bv, Mohit Kumar Jolly
{"title":"模拟基因调控网络动态的python库。","authors":"Pradyumna Harlapur, Harshavardhan Bv, Mohit Kumar Jolly","doi":"10.1186/s12859-025-06268-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The emergent dynamics of complex gene regulatory networks govern various cellular processes. However, understanding these dynamics is challenging due to the difficulty of parameterizing the computational models for these networks, especially as the network size increases. Here, we introduce a simulation library, Gene Regulatory Interaction Network Simulator (GRiNS), to address these challenges.</p><p><strong>Results: </strong>GRiNS integrates popular parameter-agnostic simulation frameworks, RACIPE and Boolean Ising formalism, into a single Python library capable of leveraging GPU acceleration for efficient and scalable simulations. GRiNS extends the ordinary differential equations (ODE) based RACIPE framework with a more modular design, allowing users to choose parameters, initial conditions, and time-series outputs for greater customisability and accuracy in simulations. For large networks, where ODE-based simulation formalisms do not scale well, GRiNS implements Boolean Ising formalism, providing a simplified, coarse-grained alternative, significantly reducing the computational cost while capturing key dynamical behaviours of large regulatory networks.</p><p><strong>Conclusion: </strong>GRiNS enables parameter-agnostic modeling of gene regulatory networks to study their dynamic and steady-state behaviors in a scalable and efficient manner. The documentation and installation instructions for GRiNS can be found at https://moltenecdysone09.github.io/GRiNS/ .</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":"26 1","pages":"250"},"PeriodicalIF":3.3000,"publicationDate":"2025-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12535162/pdf/","citationCount":"0","resultStr":"{\"title\":\"GRiNS: a python library for simulating gene regulatory network dynamics.\",\"authors\":\"Pradyumna Harlapur, Harshavardhan Bv, Mohit Kumar Jolly\",\"doi\":\"10.1186/s12859-025-06268-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The emergent dynamics of complex gene regulatory networks govern various cellular processes. However, understanding these dynamics is challenging due to the difficulty of parameterizing the computational models for these networks, especially as the network size increases. Here, we introduce a simulation library, Gene Regulatory Interaction Network Simulator (GRiNS), to address these challenges.</p><p><strong>Results: </strong>GRiNS integrates popular parameter-agnostic simulation frameworks, RACIPE and Boolean Ising formalism, into a single Python library capable of leveraging GPU acceleration for efficient and scalable simulations. GRiNS extends the ordinary differential equations (ODE) based RACIPE framework with a more modular design, allowing users to choose parameters, initial conditions, and time-series outputs for greater customisability and accuracy in simulations. For large networks, where ODE-based simulation formalisms do not scale well, GRiNS implements Boolean Ising formalism, providing a simplified, coarse-grained alternative, significantly reducing the computational cost while capturing key dynamical behaviours of large regulatory networks.</p><p><strong>Conclusion: </strong>GRiNS enables parameter-agnostic modeling of gene regulatory networks to study their dynamic and steady-state behaviors in a scalable and efficient manner. The documentation and installation instructions for GRiNS can be found at https://moltenecdysone09.github.io/GRiNS/ .</p>\",\"PeriodicalId\":8958,\"journal\":{\"name\":\"BMC Bioinformatics\",\"volume\":\"26 1\",\"pages\":\"250\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12535162/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12859-025-06268-0\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-025-06268-0","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

背景:复杂的基因调控网络的涌现动力学控制着各种细胞过程。然而,由于这些网络的计算模型难以参数化,特别是随着网络规模的增加,理解这些动态是具有挑战性的。在这里,我们介绍了一个模拟库,基因调控相互作用网络模拟器(GRiNS),以解决这些挑战。结果:GRiNS集成了流行的参数不可知仿真框架,RACIPE和布尔伊辛形式,到一个Python库能够利用GPU加速高效和可扩展的模拟。GRiNS扩展了基于常微分方程(ODE)的RACIPE框架,采用了更加模块化的设计,允许用户选择参数、初始条件和时间序列输出,以便在模拟中获得更高的可定制性和准确性。对于大型网络,其中基于ode的模拟形式不能很好地扩展,GRiNS实现了布尔伊辛形式,提供了一个简化的、粗粒度的替代方案,在捕获大型监管网络的关键动态行为的同时显著降低了计算成本。结论:GRiNS可以实现基因调控网络的参数不可知建模,以可扩展和有效的方式研究其动态和稳态行为。GRiNS的文档和安装说明可以在https://moltenecdysone09.github.io/GRiNS/上找到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GRiNS: a python library for simulating gene regulatory network dynamics.

Background: The emergent dynamics of complex gene regulatory networks govern various cellular processes. However, understanding these dynamics is challenging due to the difficulty of parameterizing the computational models for these networks, especially as the network size increases. Here, we introduce a simulation library, Gene Regulatory Interaction Network Simulator (GRiNS), to address these challenges.

Results: GRiNS integrates popular parameter-agnostic simulation frameworks, RACIPE and Boolean Ising formalism, into a single Python library capable of leveraging GPU acceleration for efficient and scalable simulations. GRiNS extends the ordinary differential equations (ODE) based RACIPE framework with a more modular design, allowing users to choose parameters, initial conditions, and time-series outputs for greater customisability and accuracy in simulations. For large networks, where ODE-based simulation formalisms do not scale well, GRiNS implements Boolean Ising formalism, providing a simplified, coarse-grained alternative, significantly reducing the computational cost while capturing key dynamical behaviours of large regulatory networks.

Conclusion: GRiNS enables parameter-agnostic modeling of gene regulatory networks to study their dynamic and steady-state behaviors in a scalable and efficient manner. The documentation and installation instructions for GRiNS can be found at https://moltenecdysone09.github.io/GRiNS/ .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BMC Bioinformatics
BMC Bioinformatics 生物-生化研究方法
CiteScore
5.70
自引率
3.30%
发文量
506
审稿时长
4.3 months
期刊介绍: BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology. BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信