利用原位尖端增强拉曼光谱研究Pt(111)上硝基芳烃加氢动力学的机理

IF 15.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zhen-Feng Cai, Meghna A. Manae, Zi-Xi Tang, Anastasiia Moskalenko, Yao Zhang, Jeremy O. Richardson, Naresh Kumar
{"title":"利用原位尖端增强拉曼光谱研究Pt(111)上硝基芳烃加氢动力学的机理","authors":"Zhen-Feng Cai, Meghna A. Manae, Zi-Xi Tang, Anastasiia Moskalenko, Yao Zhang, Jeremy O. Richardson, Naresh Kumar","doi":"10.1021/jacs.5c14338","DOIUrl":null,"url":null,"abstract":"Mechanistic insights into the molecular-level dynamics of nitroarene hydrogenation on Pt remain limited, largely because most prior studies rely on <i>ex situ</i>, ensemble-averaged measurements, or simulations considered in isolation. Here, we address this gap and demonstrate a novel methodology combining <i>in situ</i> tip-enhanced Raman spectroscopy (TERS) with density functional theory (DFT) modeling to track, at a well-defined single plasmonic junction, the hydrogenation of chloronitrothiophenol (CNTP) on atomically flat Pt(111). <i>In situ</i> TERS captures the dynamic transformation of CNTP → chloroaminothiophenol (CATP) under ambient H<sub>2</sub> exposure with a characteristic time scale of ∼6 s. Complementary DFT modeling maps the reaction energetics, revealing novel mechanistic insights: CNTP desorption is rapid initially (barrier 0.61 eV) but slows down once the Pt(111) surface is at about half-coverage; molecular bending on the half-covered Pt(111) surface is barrierless and exergonic; the first hydrogen addition to CNTP is facile (barrier 0.26 eV), while the second hydrogen addition is kinetically most demanding (barrier 0.83 eV), yielding a time scale of seconds that matches experimental results and identifies the rate-determining step. These findings advance molecular-level understanding of nitroarene hydrogenation on Pt(111) and demonstrate <i>in situ</i> TERS integrated with first-principles DFT modeling as a powerful platform for operando mechanistic studies of heterogeneous catalytic processes at the nanoscale.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"103 1","pages":""},"PeriodicalIF":15.6000,"publicationDate":"2025-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanistic Insights into Nitroarene Hydrogenation Dynamics on Pt(111) via In Situ Tip-Enhanced Raman Spectroscopy\",\"authors\":\"Zhen-Feng Cai, Meghna A. Manae, Zi-Xi Tang, Anastasiia Moskalenko, Yao Zhang, Jeremy O. Richardson, Naresh Kumar\",\"doi\":\"10.1021/jacs.5c14338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mechanistic insights into the molecular-level dynamics of nitroarene hydrogenation on Pt remain limited, largely because most prior studies rely on <i>ex situ</i>, ensemble-averaged measurements, or simulations considered in isolation. Here, we address this gap and demonstrate a novel methodology combining <i>in situ</i> tip-enhanced Raman spectroscopy (TERS) with density functional theory (DFT) modeling to track, at a well-defined single plasmonic junction, the hydrogenation of chloronitrothiophenol (CNTP) on atomically flat Pt(111). <i>In situ</i> TERS captures the dynamic transformation of CNTP → chloroaminothiophenol (CATP) under ambient H<sub>2</sub> exposure with a characteristic time scale of ∼6 s. Complementary DFT modeling maps the reaction energetics, revealing novel mechanistic insights: CNTP desorption is rapid initially (barrier 0.61 eV) but slows down once the Pt(111) surface is at about half-coverage; molecular bending on the half-covered Pt(111) surface is barrierless and exergonic; the first hydrogen addition to CNTP is facile (barrier 0.26 eV), while the second hydrogen addition is kinetically most demanding (barrier 0.83 eV), yielding a time scale of seconds that matches experimental results and identifies the rate-determining step. These findings advance molecular-level understanding of nitroarene hydrogenation on Pt(111) and demonstrate <i>in situ</i> TERS integrated with first-principles DFT modeling as a powerful platform for operando mechanistic studies of heterogeneous catalytic processes at the nanoscale.\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":\"103 1\",\"pages\":\"\"},\"PeriodicalIF\":15.6000,\"publicationDate\":\"2025-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/jacs.5c14338\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.5c14338","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

对硝基芳烃在铂上加氢的分子水平动力学机制的了解仍然有限,主要是因为大多数先前的研究依赖于非原位、整体平均测量或孤立考虑的模拟。在这里,我们解决了这一差距,并展示了一种结合原位尖端增强拉曼光谱(TERS)和密度泛函理论(DFT)建模的新方法,以跟踪在一个定义良好的单等离子体结,氯硝基噻吩(CNTP)在原子平面Pt(111)上的加氢。原位TERS捕获了CNTP→氯胺噻吩(CATP)在环境H2暴露下的动态转化,特征时间尺度为~ 6 s。互补DFT模型绘制了反应能量图,揭示了新的机理:CNTP的解吸最初是快速的(势垒0.61 eV),但一旦Pt(111)表面达到一半覆盖范围,解吸速度就会减慢;在半覆盖的Pt(111)表面上的分子弯曲是无障碍的、易受伤害的;第一次加氢到CNTP是很容易的(势垒0.26 eV),而第二次加氢是动力学上要求最高的(势垒0.83 eV),产生的时间尺度为秒,与实验结果相匹配,并确定了速率决定步骤。这些发现促进了对Pt(111)上硝基芳烃加氢的分子水平理解,并证明了原位TERS与第一性原理DFT建模相结合,是纳米尺度上多相催化过程操作机理研究的强大平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Mechanistic Insights into Nitroarene Hydrogenation Dynamics on Pt(111) via In Situ Tip-Enhanced Raman Spectroscopy

Mechanistic Insights into Nitroarene Hydrogenation Dynamics on Pt(111) via In Situ Tip-Enhanced Raman Spectroscopy
Mechanistic insights into the molecular-level dynamics of nitroarene hydrogenation on Pt remain limited, largely because most prior studies rely on ex situ, ensemble-averaged measurements, or simulations considered in isolation. Here, we address this gap and demonstrate a novel methodology combining in situ tip-enhanced Raman spectroscopy (TERS) with density functional theory (DFT) modeling to track, at a well-defined single plasmonic junction, the hydrogenation of chloronitrothiophenol (CNTP) on atomically flat Pt(111). In situ TERS captures the dynamic transformation of CNTP → chloroaminothiophenol (CATP) under ambient H2 exposure with a characteristic time scale of ∼6 s. Complementary DFT modeling maps the reaction energetics, revealing novel mechanistic insights: CNTP desorption is rapid initially (barrier 0.61 eV) but slows down once the Pt(111) surface is at about half-coverage; molecular bending on the half-covered Pt(111) surface is barrierless and exergonic; the first hydrogen addition to CNTP is facile (barrier 0.26 eV), while the second hydrogen addition is kinetically most demanding (barrier 0.83 eV), yielding a time scale of seconds that matches experimental results and identifies the rate-determining step. These findings advance molecular-level understanding of nitroarene hydrogenation on Pt(111) and demonstrate in situ TERS integrated with first-principles DFT modeling as a powerful platform for operando mechanistic studies of heterogeneous catalytic processes at the nanoscale.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信