标量Signorini问题的先验和后验误差恒等式

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Sören Bartels, Thirupathi Gudi, Alex Kaltenbach
{"title":"标量Signorini问题的先验和后验误差恒等式","authors":"Sören Bartels, Thirupathi Gudi, Alex Kaltenbach","doi":"10.1137/24m1677691","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 63, Issue 5, Page 2155-2186, October 2025. <br/> Abstract. In this paper, on the basis of a (Fenchel) duality theory on the continuous level, we derive an a posteriori error identity for arbitrary conforming approximations of the primal formulation and the dual formulation of the scalar Signorini problem. In addition, on the basis of a (Fenchel) duality theory on the discrete level, we derive an a priori error identity that applies to the approximation of the primal formulation using the Crouzeix–Raviart element and to the approximation of the dual formulation using the Raviart–Thomas element, and leads to quasi-optimal error decay rates without imposing additional assumptions on the contact set and in arbitrary space dimensions.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"91 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Priori and A Posteriori Error Identities for the Scalar Signorini Problem\",\"authors\":\"Sören Bartels, Thirupathi Gudi, Alex Kaltenbach\",\"doi\":\"10.1137/24m1677691\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Numerical Analysis, Volume 63, Issue 5, Page 2155-2186, October 2025. <br/> Abstract. In this paper, on the basis of a (Fenchel) duality theory on the continuous level, we derive an a posteriori error identity for arbitrary conforming approximations of the primal formulation and the dual formulation of the scalar Signorini problem. In addition, on the basis of a (Fenchel) duality theory on the discrete level, we derive an a priori error identity that applies to the approximation of the primal formulation using the Crouzeix–Raviart element and to the approximation of the dual formulation using the Raviart–Thomas element, and leads to quasi-optimal error decay rates without imposing additional assumptions on the contact set and in arbitrary space dimensions.\",\"PeriodicalId\":49527,\"journal\":{\"name\":\"SIAM Journal on Numerical Analysis\",\"volume\":\"91 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Numerical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/24m1677691\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/24m1677691","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

SIAM数值分析杂志,第63卷,第5期,2155-2186页,2025年10月。摘要。本文基于连续水平上的(Fenchel)对偶理论,导出了标量sigorini问题的原始公式和对偶公式的任意一致性近似的后验误差恒等式。此外,基于离散水平上的(Fenchel)对偶理论,我们推导了一个先验误差恒等式,该恒等式适用于使用Crouzeix-Raviart元素近似原始公式和使用Raviart-Thomas元素近似对偶公式,并导致了准最优误差衰减率,而无需对接触集和任意空间维度施加额外假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Priori and A Posteriori Error Identities for the Scalar Signorini Problem
SIAM Journal on Numerical Analysis, Volume 63, Issue 5, Page 2155-2186, October 2025.
Abstract. In this paper, on the basis of a (Fenchel) duality theory on the continuous level, we derive an a posteriori error identity for arbitrary conforming approximations of the primal formulation and the dual formulation of the scalar Signorini problem. In addition, on the basis of a (Fenchel) duality theory on the discrete level, we derive an a priori error identity that applies to the approximation of the primal formulation using the Crouzeix–Raviart element and to the approximation of the dual formulation using the Raviart–Thomas element, and leads to quasi-optimal error decay rates without imposing additional assumptions on the contact set and in arbitrary space dimensions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
6.90%
发文量
110
审稿时长
4-8 weeks
期刊介绍: SIAM Journal on Numerical Analysis (SINUM) contains research articles on the development and analysis of numerical methods. Topics include the rigorous study of convergence of algorithms, their accuracy, their stability, and their computational complexity. Also included are results in mathematical analysis that contribute to algorithm analysis, and computational results that demonstrate algorithm behavior and applicability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信