一个有效的端到端计算框架,用于生成ECG校准的人类心房电生理体积模型。

IF 11.8 1区 医学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Elena Zappon , Luca Azzolin , Matthias A.F. Gsell , Franz Thaler , Anton J. Prassl , Robert Arnold , Karli Gillette , Mohammadreza Kariman , Martin Manninger , Daniel Scherr , Aurel Neic , Martin Urschler , Christoph M. Augustin , Edward J. Vigmond , Gernot Plank
{"title":"一个有效的端到端计算框架,用于生成ECG校准的人类心房电生理体积模型。","authors":"Elena Zappon ,&nbsp;Luca Azzolin ,&nbsp;Matthias A.F. Gsell ,&nbsp;Franz Thaler ,&nbsp;Anton J. Prassl ,&nbsp;Robert Arnold ,&nbsp;Karli Gillette ,&nbsp;Mohammadreza Kariman ,&nbsp;Martin Manninger ,&nbsp;Daniel Scherr ,&nbsp;Aurel Neic ,&nbsp;Martin Urschler ,&nbsp;Christoph M. Augustin ,&nbsp;Edward J. Vigmond ,&nbsp;Gernot Plank","doi":"10.1016/j.media.2025.103822","DOIUrl":null,"url":null,"abstract":"<div><div>Computational models of atrial electrophysiology (EP) are increasingly utilized for applications such as the development of advanced mapping systems, personalized clinical therapy planning, and the generation of virtual cohorts and digital twins. These models have the potential to establish robust causal links between simulated <em>in silico</em> behaviors and observed human atrial EP, enabling safer, cost-effective, and comprehensive exploration of atrial dynamics. However, current state-of-the-art approaches lack the fidelity and scalability required for regulatory-grade applications, particularly in creating high-quality virtual cohorts or patient-specific digital twins. Challenges include anatomically accurate model generation, calibration to sparse and uncertain clinical data, and computational efficiency within a streamlined workflow.</div><div>This study addresses these limitations by introducing novel methodologies integrated into an automated end-to-end workflow for generating high-fidelity digital twin snapshots and virtual cohorts of atrial EP. These innovations include: (i) automated multi-scale generation of volumetric biatrial models with detailed anatomical structures and fiber architecture; (ii) a robust method for defining space-varying atrial parameter fields; (iii) a parametric approach for modeling inter-atrial conduction pathways; and (iv) an efficient forward EP model for high-fidelity electro-cardiogram (ECG) computation.</div><div>We evaluated this workflow on a cohort of 50 atrial fibrillation (AF) patients, producing high-quality meshes suitable for reaction-eikonal and reaction–diffusion models, demonstrating the ability to efficiently simulate atrial ECGs under parametrically controlled conditions, and, as a proof-of-concept, the feasibility of calibrating models to clinical P-wave in four patients. These advancements represent a critical step towards scalable, precise, and clinically applicable digital twin models and virtual cohorts, enabling enhanced patient-specific predictions and therapeutic planning.</div></div>","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":"107 ","pages":"Article 103822"},"PeriodicalIF":11.8000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An efficient end-to-end computational framework for the generation of ECG calibrated volumetric models of human atrial electrophysiology\",\"authors\":\"Elena Zappon ,&nbsp;Luca Azzolin ,&nbsp;Matthias A.F. Gsell ,&nbsp;Franz Thaler ,&nbsp;Anton J. Prassl ,&nbsp;Robert Arnold ,&nbsp;Karli Gillette ,&nbsp;Mohammadreza Kariman ,&nbsp;Martin Manninger ,&nbsp;Daniel Scherr ,&nbsp;Aurel Neic ,&nbsp;Martin Urschler ,&nbsp;Christoph M. Augustin ,&nbsp;Edward J. Vigmond ,&nbsp;Gernot Plank\",\"doi\":\"10.1016/j.media.2025.103822\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Computational models of atrial electrophysiology (EP) are increasingly utilized for applications such as the development of advanced mapping systems, personalized clinical therapy planning, and the generation of virtual cohorts and digital twins. These models have the potential to establish robust causal links between simulated <em>in silico</em> behaviors and observed human atrial EP, enabling safer, cost-effective, and comprehensive exploration of atrial dynamics. However, current state-of-the-art approaches lack the fidelity and scalability required for regulatory-grade applications, particularly in creating high-quality virtual cohorts or patient-specific digital twins. Challenges include anatomically accurate model generation, calibration to sparse and uncertain clinical data, and computational efficiency within a streamlined workflow.</div><div>This study addresses these limitations by introducing novel methodologies integrated into an automated end-to-end workflow for generating high-fidelity digital twin snapshots and virtual cohorts of atrial EP. These innovations include: (i) automated multi-scale generation of volumetric biatrial models with detailed anatomical structures and fiber architecture; (ii) a robust method for defining space-varying atrial parameter fields; (iii) a parametric approach for modeling inter-atrial conduction pathways; and (iv) an efficient forward EP model for high-fidelity electro-cardiogram (ECG) computation.</div><div>We evaluated this workflow on a cohort of 50 atrial fibrillation (AF) patients, producing high-quality meshes suitable for reaction-eikonal and reaction–diffusion models, demonstrating the ability to efficiently simulate atrial ECGs under parametrically controlled conditions, and, as a proof-of-concept, the feasibility of calibrating models to clinical P-wave in four patients. These advancements represent a critical step towards scalable, precise, and clinically applicable digital twin models and virtual cohorts, enabling enhanced patient-specific predictions and therapeutic planning.</div></div>\",\"PeriodicalId\":18328,\"journal\":{\"name\":\"Medical image analysis\",\"volume\":\"107 \",\"pages\":\"Article 103822\"},\"PeriodicalIF\":11.8000,\"publicationDate\":\"2025-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical image analysis\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1361841525003688\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image analysis","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1361841525003688","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

心房电生理(EP)的计算模型越来越多地用于开发先进的制图系统、个性化的临床治疗计划、生成虚拟队列和数字双胞胎等应用。这些模型有可能在模拟的计算机行为和观察到的人类心房电位之间建立强大的因果关系,从而实现更安全、更经济、更全面的心房动力学探索。然而,目前最先进的方法缺乏监管级应用所需的保真度和可扩展性,特别是在创建高质量的虚拟队列或特定患者的数字双胞胎方面。挑战包括解剖学上准确的模型生成,对稀疏和不确定的临床数据的校准,以及流线型工作流程中的计算效率。本研究通过引入集成到自动化端到端工作流中的新方法来解决这些局限性,该工作流用于生成高保真数字孪生快照和心房电位的虚拟队列。这些创新包括:(i)自动多尺度生成具有详细解剖结构和纤维结构的体积双心房模型;(ii)定义空间变化心房参数场的鲁棒方法;(iii)模拟心房传导通路的参数化方法;(iv)用于高保真心电图(ECG)计算的高效正演EP模型。我们在50名房颤(AF)患者的队列中评估了该工作流程,生成了适用于反应-模拟和反应-扩散模型的高质量网格,证明了在参数控制条件下有效模拟心房心电图的能力,并且作为概念验证,将模型校准为4名患者的临床p波的可行性。这些进步代表着向可扩展、精确和临床应用的数字双胞胎模型和虚拟队列迈出的关键一步,从而增强了针对患者的预测和治疗计划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

An efficient end-to-end computational framework for the generation of ECG calibrated volumetric models of human atrial electrophysiology

An efficient end-to-end computational framework for the generation of ECG calibrated volumetric models of human atrial electrophysiology
Computational models of atrial electrophysiology (EP) are increasingly utilized for applications such as the development of advanced mapping systems, personalized clinical therapy planning, and the generation of virtual cohorts and digital twins. These models have the potential to establish robust causal links between simulated in silico behaviors and observed human atrial EP, enabling safer, cost-effective, and comprehensive exploration of atrial dynamics. However, current state-of-the-art approaches lack the fidelity and scalability required for regulatory-grade applications, particularly in creating high-quality virtual cohorts or patient-specific digital twins. Challenges include anatomically accurate model generation, calibration to sparse and uncertain clinical data, and computational efficiency within a streamlined workflow.
This study addresses these limitations by introducing novel methodologies integrated into an automated end-to-end workflow for generating high-fidelity digital twin snapshots and virtual cohorts of atrial EP. These innovations include: (i) automated multi-scale generation of volumetric biatrial models with detailed anatomical structures and fiber architecture; (ii) a robust method for defining space-varying atrial parameter fields; (iii) a parametric approach for modeling inter-atrial conduction pathways; and (iv) an efficient forward EP model for high-fidelity electro-cardiogram (ECG) computation.
We evaluated this workflow on a cohort of 50 atrial fibrillation (AF) patients, producing high-quality meshes suitable for reaction-eikonal and reaction–diffusion models, demonstrating the ability to efficiently simulate atrial ECGs under parametrically controlled conditions, and, as a proof-of-concept, the feasibility of calibrating models to clinical P-wave in four patients. These advancements represent a critical step towards scalable, precise, and clinically applicable digital twin models and virtual cohorts, enabling enhanced patient-specific predictions and therapeutic planning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Medical image analysis
Medical image analysis 工程技术-工程:生物医学
CiteScore
22.10
自引率
6.40%
发文量
309
审稿时长
6.6 months
期刊介绍: Medical Image Analysis serves as a platform for sharing new research findings in the realm of medical and biological image analysis, with a focus on applications of computer vision, virtual reality, and robotics to biomedical imaging challenges. The journal prioritizes the publication of high-quality, original papers contributing to the fundamental science of processing, analyzing, and utilizing medical and biological images. It welcomes approaches utilizing biomedical image datasets across all spatial scales, from molecular/cellular imaging to tissue/organ imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信