通过增强计算机断层扫描和组织病理学预测结直肠癌微卫星不稳定性的多模态深度学习模型。

IF 3.3 3区 医学 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Kai Tang , Ruiling She , Guangyuan Chen , Zhuoyao Xie , Tao Li , Dexuan Chen , Weihong Huang , Qianjin Feng , Yinghua Zhao , Yubao Liu
{"title":"通过增强计算机断层扫描和组织病理学预测结直肠癌微卫星不稳定性的多模态深度学习模型。","authors":"Kai Tang ,&nbsp;Ruiling She ,&nbsp;Guangyuan Chen ,&nbsp;Zhuoyao Xie ,&nbsp;Tao Li ,&nbsp;Dexuan Chen ,&nbsp;Weihong Huang ,&nbsp;Qianjin Feng ,&nbsp;Yinghua Zhao ,&nbsp;Yubao Liu","doi":"10.1016/j.ejrad.2025.112468","DOIUrl":null,"url":null,"abstract":"<div><h3>Objectives</h3><div>To develop and validate a multimodal deep learning (DL) model that integrates preoperative contrast-enhanced computed tomography (CECT) and postoperative whole-slide images (WSIs) to predict microsatellite instability (MSI) status in colorectal cancer (CRC).</div></div><div><h3>Materials and methods</h3><div>This retrospective, multicenter study enrolled 305 CRC patients with paired CECT and WSIs. Patients from Center I and II were allocated to the training (n = 169) and internal validation (n = 85) sets, while those from Center III formed the external test set (n = 51). Pathology-based DL (PathDL) and venous-phase CECT (VPDL) models were constructed using EfficientNet-b0 and ResNet 101 architectures, respectively. A fusion model (F-VP-PathDL, Fusion of venous phase CT and pathology with deep learning) was developed using an adaptive residual network to integrate features from both modalities. Model performance was evaluated using area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, specificity, and F1 score.</div></div><div><h3>Results</h3><div>The F-VP-PathDL model achieved strong performance on the internal validation set, with an AUC of 0.883 (95 % CI: 0.732–0.967). On the external test set, the model achieved an AUC of 0.905 (95 % CI: 0.831–0.945), outperforming single-modality and alternative fusion models (PathDL: 0.794; VPDL: 0.858; APDL: 0.802; F-AVPDL: 0.813). The model also demonstrated robust accuracy (84.2 %, 95 % CI: 69.1 %–92.8 %), sensitivity (80.3 %, 95 % CI: 28.4 %–98.7 %), specificity (83.7 %, 95% CI: 68.8 %–93.9 %) and F1 score (0.837, 95 % CI: 0.326–0.999) on the external test set.</div></div><div><h3>Conclusions</h3><div>The F-VP-PathDL model demonstrates robust generalizability across centers and offers a clinically scalable tool for MSI prediction in CRC, supporting patient stratification and informing immunotherapy decisions.</div></div>","PeriodicalId":12063,"journal":{"name":"European Journal of Radiology","volume":"193 ","pages":"Article 112468"},"PeriodicalIF":3.3000,"publicationDate":"2025-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multimodal deep learning model for predicting microsatellite instability in colorectal cancer by contrast-enhanced computed tomography and histopathology\",\"authors\":\"Kai Tang ,&nbsp;Ruiling She ,&nbsp;Guangyuan Chen ,&nbsp;Zhuoyao Xie ,&nbsp;Tao Li ,&nbsp;Dexuan Chen ,&nbsp;Weihong Huang ,&nbsp;Qianjin Feng ,&nbsp;Yinghua Zhao ,&nbsp;Yubao Liu\",\"doi\":\"10.1016/j.ejrad.2025.112468\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objectives</h3><div>To develop and validate a multimodal deep learning (DL) model that integrates preoperative contrast-enhanced computed tomography (CECT) and postoperative whole-slide images (WSIs) to predict microsatellite instability (MSI) status in colorectal cancer (CRC).</div></div><div><h3>Materials and methods</h3><div>This retrospective, multicenter study enrolled 305 CRC patients with paired CECT and WSIs. Patients from Center I and II were allocated to the training (n = 169) and internal validation (n = 85) sets, while those from Center III formed the external test set (n = 51). Pathology-based DL (PathDL) and venous-phase CECT (VPDL) models were constructed using EfficientNet-b0 and ResNet 101 architectures, respectively. A fusion model (F-VP-PathDL, Fusion of venous phase CT and pathology with deep learning) was developed using an adaptive residual network to integrate features from both modalities. Model performance was evaluated using area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, specificity, and F1 score.</div></div><div><h3>Results</h3><div>The F-VP-PathDL model achieved strong performance on the internal validation set, with an AUC of 0.883 (95 % CI: 0.732–0.967). On the external test set, the model achieved an AUC of 0.905 (95 % CI: 0.831–0.945), outperforming single-modality and alternative fusion models (PathDL: 0.794; VPDL: 0.858; APDL: 0.802; F-AVPDL: 0.813). The model also demonstrated robust accuracy (84.2 %, 95 % CI: 69.1 %–92.8 %), sensitivity (80.3 %, 95 % CI: 28.4 %–98.7 %), specificity (83.7 %, 95% CI: 68.8 %–93.9 %) and F1 score (0.837, 95 % CI: 0.326–0.999) on the external test set.</div></div><div><h3>Conclusions</h3><div>The F-VP-PathDL model demonstrates robust generalizability across centers and offers a clinically scalable tool for MSI prediction in CRC, supporting patient stratification and informing immunotherapy decisions.</div></div>\",\"PeriodicalId\":12063,\"journal\":{\"name\":\"European Journal of Radiology\",\"volume\":\"193 \",\"pages\":\"Article 112468\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Radiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0720048X25005546\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Radiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0720048X25005546","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

目的:开发并验证一种多模态深度学习(DL)模型,该模型集成了术前对比增强计算机断层扫描(CECT)和术后全片图像(wsi),以预测结直肠癌(CRC)的微卫星不稳定性(MSI)状态。材料和方法:这项回顾性、多中心研究纳入了305例结直肠癌患者,同时行CECT和wsi。来自中心I和II的患者被分配到训练组(n = 169)和内部验证组(n = 85),而来自中心III的患者组成外部测试组(n = 51)。基于病理的DL (PathDL)和静脉期CECT (VPDL)模型分别使用EfficientNet-b0和ResNet 101架构构建。使用自适应残差网络整合两种模式的特征,开发了融合模型(F-VP-PathDL,融合静脉期CT和病理学与深度学习)。使用受试者工作特征曲线下面积(AUC)、准确性、灵敏度、特异性和F1评分来评估模型的性能。结果:F-VP-PathDL模型在内部验证集上取得了较好的性能,AUC为0.883 (95% CI: 0.732-0.967)。在外部测试集上,该模型的AUC为0.905 (95% CI: 0.831-0.945),优于单模态和替代融合模型(PathDL: 0.794; VPDL: 0.858; APDL: 0.802; F-AVPDL: 0.813)。该模型在外部测试集上也显示出稳健的准确性(84.2%,95% CI: 69.1% - 92.8%)、灵敏度(80.3%,95% CI: 28.4% - 98.7%)、特异性(83.7%,95% CI: 68.8% - 93.9%)和F1评分(0.837,95% CI: 0.326-0.999)。结论:F-VP-PathDL模型显示了跨中心的强大通用性,为CRC的MSI预测提供了临床可扩展的工具,支持患者分层并为免疫治疗决策提供信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multimodal deep learning model for predicting microsatellite instability in colorectal cancer by contrast-enhanced computed tomography and histopathology

Objectives

To develop and validate a multimodal deep learning (DL) model that integrates preoperative contrast-enhanced computed tomography (CECT) and postoperative whole-slide images (WSIs) to predict microsatellite instability (MSI) status in colorectal cancer (CRC).

Materials and methods

This retrospective, multicenter study enrolled 305 CRC patients with paired CECT and WSIs. Patients from Center I and II were allocated to the training (n = 169) and internal validation (n = 85) sets, while those from Center III formed the external test set (n = 51). Pathology-based DL (PathDL) and venous-phase CECT (VPDL) models were constructed using EfficientNet-b0 and ResNet 101 architectures, respectively. A fusion model (F-VP-PathDL, Fusion of venous phase CT and pathology with deep learning) was developed using an adaptive residual network to integrate features from both modalities. Model performance was evaluated using area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, specificity, and F1 score.

Results

The F-VP-PathDL model achieved strong performance on the internal validation set, with an AUC of 0.883 (95 % CI: 0.732–0.967). On the external test set, the model achieved an AUC of 0.905 (95 % CI: 0.831–0.945), outperforming single-modality and alternative fusion models (PathDL: 0.794; VPDL: 0.858; APDL: 0.802; F-AVPDL: 0.813). The model also demonstrated robust accuracy (84.2 %, 95 % CI: 69.1 %–92.8 %), sensitivity (80.3 %, 95 % CI: 28.4 %–98.7 %), specificity (83.7 %, 95% CI: 68.8 %–93.9 %) and F1 score (0.837, 95 % CI: 0.326–0.999) on the external test set.

Conclusions

The F-VP-PathDL model demonstrates robust generalizability across centers and offers a clinically scalable tool for MSI prediction in CRC, supporting patient stratification and informing immunotherapy decisions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.70
自引率
3.00%
发文量
398
审稿时长
42 days
期刊介绍: European Journal of Radiology is an international journal which aims to communicate to its readers, state-of-the-art information on imaging developments in the form of high quality original research articles and timely reviews on current developments in the field. Its audience includes clinicians at all levels of training including radiology trainees, newly qualified imaging specialists and the experienced radiologist. Its aim is to inform efficient, appropriate and evidence-based imaging practice to the benefit of patients worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信