基于界面电荷动力学驱动的ii型3D/2D CdIn2S4/镍金属-有机层异质结双功能吸附-光催化体系用于环境净化和水分解。

IF 9.7 1区 化学 Q1 CHEMISTRY, PHYSICAL
Keren Shi , Ziyan Wang , Xiaoyu Li , Qiaowei Xiao , Wenxin Ji , Jianli Zhang , Jingyang Mu , Huiqin Yao
{"title":"基于界面电荷动力学驱动的ii型3D/2D CdIn2S4/镍金属-有机层异质结双功能吸附-光催化体系用于环境净化和水分解。","authors":"Keren Shi ,&nbsp;Ziyan Wang ,&nbsp;Xiaoyu Li ,&nbsp;Qiaowei Xiao ,&nbsp;Wenxin Ji ,&nbsp;Jianli Zhang ,&nbsp;Jingyang Mu ,&nbsp;Huiqin Yao","doi":"10.1016/j.jcis.2025.139230","DOIUrl":null,"url":null,"abstract":"<div><div>The efficient removal of pollutants and solar-driven hydrogen production are crucial for advancing a green economy, yet their practical implementation remains challenging. In this study, we shortened the transport path of photogenerated charge carriers and increased the interfacial contact area by exfoliating 3D nickel metal–organic frameworks (Ni-MOFs) into 2D nickel metal–organic layers (Ni-MOLs). A 3D/2D CdIn<sub>2</sub>S<sub>4</sub>/Ni-MOLs (CIS/NM) type-II heterojunction was successfully constructed via a one-pot solvothermal method, in which 3D CdIn<sub>2</sub>S<sub>4</sub> was grown in situ on 2D Ni-MOLs. This heterojunction demonstrated synergistic and efficient adsorption-photocatalytic degradation of methylene blue (MB) and photocatalytic hydrogen production. Adsorption tests revealed that 1.5 CIS/NM achieved a capacity of 38.2 mg g<sup>−1</sup> for MB (30 mg L<sup>−1</sup>) within 240 min, following the Langmuir isotherm model and pseudo-second-order kinetics. Under optimized initial MB concentration and pH conditions (<em>C</em><sub>0</sub> = 10 mg L<sup>−1</sup>, pH = 11), the synergistic removal efficiency of 1.5 CIS/NM reached 99.9 %. Density functional theory (DFT) calculations and mechanistic studies confirmed the formation of a type-II heterojunction between CdIn<sub>2</sub>S<sub>4</sub> and Ni-MOLs, with <span><math><mo>•</mo><mi>OH</mi></math></span> and <span><math><mo>•</mo><msubsup><mi>O</mi><mn>2</mn><mo>–</mo></msubsup></math></span> identified as the dominant reactive radicals. Furthermore, 1.5 CIS/NM exhibited excellent photocatalytic hydrogen evolution performance, with a rate of 1247 μmol g<sup>−1</sup> h<sup>−1</sup> and an apparent quantum efficiency of 8.1 % at 400 nm. This study offers a straightforward synthesis strategy for achieving adsorption-degradation of pollutants and solar hydrogen production, providing new insights for the design of bifunctional photocatalysts.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"703 ","pages":"Article 139230"},"PeriodicalIF":9.7000,"publicationDate":"2025-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A dual-functional adsorption-photocatalysis system driven by interfacial charge dynamics in a type-II 3D/2D CdIn2S4/nickel metal–organic layer heterojunction for environmental purification and water splitting\",\"authors\":\"Keren Shi ,&nbsp;Ziyan Wang ,&nbsp;Xiaoyu Li ,&nbsp;Qiaowei Xiao ,&nbsp;Wenxin Ji ,&nbsp;Jianli Zhang ,&nbsp;Jingyang Mu ,&nbsp;Huiqin Yao\",\"doi\":\"10.1016/j.jcis.2025.139230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The efficient removal of pollutants and solar-driven hydrogen production are crucial for advancing a green economy, yet their practical implementation remains challenging. In this study, we shortened the transport path of photogenerated charge carriers and increased the interfacial contact area by exfoliating 3D nickel metal–organic frameworks (Ni-MOFs) into 2D nickel metal–organic layers (Ni-MOLs). A 3D/2D CdIn<sub>2</sub>S<sub>4</sub>/Ni-MOLs (CIS/NM) type-II heterojunction was successfully constructed via a one-pot solvothermal method, in which 3D CdIn<sub>2</sub>S<sub>4</sub> was grown in situ on 2D Ni-MOLs. This heterojunction demonstrated synergistic and efficient adsorption-photocatalytic degradation of methylene blue (MB) and photocatalytic hydrogen production. Adsorption tests revealed that 1.5 CIS/NM achieved a capacity of 38.2 mg g<sup>−1</sup> for MB (30 mg L<sup>−1</sup>) within 240 min, following the Langmuir isotherm model and pseudo-second-order kinetics. Under optimized initial MB concentration and pH conditions (<em>C</em><sub>0</sub> = 10 mg L<sup>−1</sup>, pH = 11), the synergistic removal efficiency of 1.5 CIS/NM reached 99.9 %. Density functional theory (DFT) calculations and mechanistic studies confirmed the formation of a type-II heterojunction between CdIn<sub>2</sub>S<sub>4</sub> and Ni-MOLs, with <span><math><mo>•</mo><mi>OH</mi></math></span> and <span><math><mo>•</mo><msubsup><mi>O</mi><mn>2</mn><mo>–</mo></msubsup></math></span> identified as the dominant reactive radicals. Furthermore, 1.5 CIS/NM exhibited excellent photocatalytic hydrogen evolution performance, with a rate of 1247 μmol g<sup>−1</sup> h<sup>−1</sup> and an apparent quantum efficiency of 8.1 % at 400 nm. This study offers a straightforward synthesis strategy for achieving adsorption-degradation of pollutants and solar hydrogen production, providing new insights for the design of bifunctional photocatalysts.</div></div>\",\"PeriodicalId\":351,\"journal\":{\"name\":\"Journal of Colloid and Interface Science\",\"volume\":\"703 \",\"pages\":\"Article 139230\"},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2025-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Colloid and Interface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021979725026220\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979725026220","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

污染物的有效去除和太阳能驱动的氢气生产对于推进绿色经济至关重要,但它们的实际实施仍然具有挑战性。在本研究中,我们通过将三维镍金属有机框架(ni - mof)剥离成二维镍金属有机层(Ni-MOLs),缩短了光生载流子的输运路径,增加了界面接触面积。采用单锅溶剂热法成功构建了三维/二维CdIn2S4/Ni-MOLs (CIS/NM) ii型异质结,并将三维CdIn2S4原位生长在二维Ni-MOLs上。该异质结具有协同和高效的吸附-光催化降解亚甲基蓝(MB)和光催化制氢。根据Langmuir等温模型和准二级动力学,1.5 CIS/NM对MB (30 mg L-1)的吸附量在240 min内达到38.2 mg g-1。在优化的初始MB浓度和pH条件下(C0 = 10 mg L-1, pH = 11), 1.5 CIS/NM的协同去除率达到99.9%。密度泛函理论(DFT)计算和机理研究证实CdIn2S4与Ni-MOLs之间形成了ii型异质结,其中•OH和•O2-被确定为主要的活性自由基。此外,1.5 CIS/NM具有优异的光催化析氢性能,在400 NM处速率为1247 μmol g-1 h-1,表观量子效率为8.1%。该研究为实现污染物的吸附降解和太阳能制氢提供了一种简单的合成策略,为双功能光催化剂的设计提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A dual-functional adsorption-photocatalysis system driven by interfacial charge dynamics in a type-II 3D/2D CdIn2S4/nickel metal–organic layer heterojunction for environmental purification and water splitting

A dual-functional adsorption-photocatalysis system driven by interfacial charge dynamics in a type-II 3D/2D CdIn2S4/nickel metal–organic layer heterojunction for environmental purification and water splitting
The efficient removal of pollutants and solar-driven hydrogen production are crucial for advancing a green economy, yet their practical implementation remains challenging. In this study, we shortened the transport path of photogenerated charge carriers and increased the interfacial contact area by exfoliating 3D nickel metal–organic frameworks (Ni-MOFs) into 2D nickel metal–organic layers (Ni-MOLs). A 3D/2D CdIn2S4/Ni-MOLs (CIS/NM) type-II heterojunction was successfully constructed via a one-pot solvothermal method, in which 3D CdIn2S4 was grown in situ on 2D Ni-MOLs. This heterojunction demonstrated synergistic and efficient adsorption-photocatalytic degradation of methylene blue (MB) and photocatalytic hydrogen production. Adsorption tests revealed that 1.5 CIS/NM achieved a capacity of 38.2 mg g−1 for MB (30 mg L−1) within 240 min, following the Langmuir isotherm model and pseudo-second-order kinetics. Under optimized initial MB concentration and pH conditions (C0 = 10 mg L−1, pH = 11), the synergistic removal efficiency of 1.5 CIS/NM reached 99.9 %. Density functional theory (DFT) calculations and mechanistic studies confirmed the formation of a type-II heterojunction between CdIn2S4 and Ni-MOLs, with OH and O2 identified as the dominant reactive radicals. Furthermore, 1.5 CIS/NM exhibited excellent photocatalytic hydrogen evolution performance, with a rate of 1247 μmol g−1 h−1 and an apparent quantum efficiency of 8.1 % at 400 nm. This study offers a straightforward synthesis strategy for achieving adsorption-degradation of pollutants and solar hydrogen production, providing new insights for the design of bifunctional photocatalysts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信