{"title":"智能分子逻辑计算工具包:基于核酸的构建,功能和增强的生物传感应用","authors":"Yaxue Hu, Jinghui Zhang, Ke Shen, Wei Shen, Hian Kee Lee, Sheng Tang","doi":"10.1039/d5sc06176h","DOIUrl":null,"url":null,"abstract":"Molecular logic computing is revolutionizing biosensing by enabling intelligent, programmable detection, moving beyond simple target recognition to advanced molecular-level information processing. By employing biological molecules such as DNA/RNA, proteins/enzymes, or even whole biological cells as building blocks for creating molecular logic toolkits, logic operations have made rapid progress in molecular logic-based biosensing. In this review, we present a comprehensive overview of intelligent molecular logic operation toolkits and their contributions to advancing biosensing technologies. We first outline the design principles of these toolkits, detailing various types of logic gates, including Boolean, combinatorial, and sequential logic, as well as advanced feedback systems, fuzzy logic, and reversible logic. We delve into the construction of DNA-based, synthetic, and nanomaterial-based logical operation toolkits. Following this, we explore the functionalities of intelligent molecular logic computing toolkits, which encompass modular multi-signal integration, activatable Lock-Key (OFF-ON) reconfigurable control, programmable control, and logic-gated nanomachines. We also elaborate on the analytical mechanisms underpinning molecular logic-gated operations that utilize various detection platforms, including fluorescent, colorimetric, and electrochemical techniques, along with artificial intelligence-powered and smartphone-based detection platforms. Applications spanning genetic analysis, cancer analysis, pathogen identification, living cell logic analysis, and point-of-care diagnostics are highlighted. Finally, the future challenges associated with molecular logic toolkits in enhancing biosensing and potential solutions were outlined, providing insights into practical obstacles as well as future trends and prospects.","PeriodicalId":9909,"journal":{"name":"Chemical Science","volume":"19 1","pages":""},"PeriodicalIF":7.4000,"publicationDate":"2025-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intelligent Molecular Logic Computing Toolkits: Nucleic Acid-Based Construction, Functionality, and Enhanced Biosensing Applications\",\"authors\":\"Yaxue Hu, Jinghui Zhang, Ke Shen, Wei Shen, Hian Kee Lee, Sheng Tang\",\"doi\":\"10.1039/d5sc06176h\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Molecular logic computing is revolutionizing biosensing by enabling intelligent, programmable detection, moving beyond simple target recognition to advanced molecular-level information processing. By employing biological molecules such as DNA/RNA, proteins/enzymes, or even whole biological cells as building blocks for creating molecular logic toolkits, logic operations have made rapid progress in molecular logic-based biosensing. In this review, we present a comprehensive overview of intelligent molecular logic operation toolkits and their contributions to advancing biosensing technologies. We first outline the design principles of these toolkits, detailing various types of logic gates, including Boolean, combinatorial, and sequential logic, as well as advanced feedback systems, fuzzy logic, and reversible logic. We delve into the construction of DNA-based, synthetic, and nanomaterial-based logical operation toolkits. Following this, we explore the functionalities of intelligent molecular logic computing toolkits, which encompass modular multi-signal integration, activatable Lock-Key (OFF-ON) reconfigurable control, programmable control, and logic-gated nanomachines. We also elaborate on the analytical mechanisms underpinning molecular logic-gated operations that utilize various detection platforms, including fluorescent, colorimetric, and electrochemical techniques, along with artificial intelligence-powered and smartphone-based detection platforms. Applications spanning genetic analysis, cancer analysis, pathogen identification, living cell logic analysis, and point-of-care diagnostics are highlighted. Finally, the future challenges associated with molecular logic toolkits in enhancing biosensing and potential solutions were outlined, providing insights into practical obstacles as well as future trends and prospects.\",\"PeriodicalId\":9909,\"journal\":{\"name\":\"Chemical Science\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2025-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d5sc06176h\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5sc06176h","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Molecular logic computing is revolutionizing biosensing by enabling intelligent, programmable detection, moving beyond simple target recognition to advanced molecular-level information processing. By employing biological molecules such as DNA/RNA, proteins/enzymes, or even whole biological cells as building blocks for creating molecular logic toolkits, logic operations have made rapid progress in molecular logic-based biosensing. In this review, we present a comprehensive overview of intelligent molecular logic operation toolkits and their contributions to advancing biosensing technologies. We first outline the design principles of these toolkits, detailing various types of logic gates, including Boolean, combinatorial, and sequential logic, as well as advanced feedback systems, fuzzy logic, and reversible logic. We delve into the construction of DNA-based, synthetic, and nanomaterial-based logical operation toolkits. Following this, we explore the functionalities of intelligent molecular logic computing toolkits, which encompass modular multi-signal integration, activatable Lock-Key (OFF-ON) reconfigurable control, programmable control, and logic-gated nanomachines. We also elaborate on the analytical mechanisms underpinning molecular logic-gated operations that utilize various detection platforms, including fluorescent, colorimetric, and electrochemical techniques, along with artificial intelligence-powered and smartphone-based detection platforms. Applications spanning genetic analysis, cancer analysis, pathogen identification, living cell logic analysis, and point-of-care diagnostics are highlighted. Finally, the future challenges associated with molecular logic toolkits in enhancing biosensing and potential solutions were outlined, providing insights into practical obstacles as well as future trends and prospects.
期刊介绍:
Chemical Science is a journal that encompasses various disciplines within the chemical sciences. Its scope includes publishing ground-breaking research with significant implications for its respective field, as well as appealing to a wider audience in related areas. To be considered for publication, articles must showcase innovative and original advances in their field of study and be presented in a manner that is understandable to scientists from diverse backgrounds. However, the journal generally does not publish highly specialized research.