收集语言、语音声学和面部表情来预测精神病和其他临床结果:来自AMP®SCZ计划的策略。

IF 4.1 Q2 PSYCHIATRY
Zarina R Bilgrami, Eduardo Castro, Carla Agurto, Einat Liebenthal, Michaela Ennis, Justin T Baker, Isabelle Scott, Beau-Luke Colton, Kang Ik K Cho, Linying Li, Zailyn Tamayo, Mara Henecks, Habiballah Rahimi Eichi, Tae'lar Henry, Jean Addington, Luis K Alameda, Celso Arango, Nicholas J K Breitborde, Matthew R Broome, Kristin S Cadenhead, Monica E Calkins, Eric Yu Hai Chen, Jimmy Choi, Philippe Conus, Barbara A Cornblatt, Lauren M Ellman, Paolo Fusar-Poli, Pablo A Gaspar, Carla Gerber, Louise Birkedal Glenthøj, Leslie E Horton, Christy Hui, Joseph Kambeitz, Lana Kambeitz-Ilankovic, Matcheri S Keshavan, Sung-Wan Kim, Nikolaos Koutsouleris, Jun Soo Kwon, Kerstin Langbein, Daniel Mamah, Covadonga M Diaz-Caneja, Daniel H Mathalon, Vijay A Mittal, Merete Nordentoft, Godfrey D Pearlson, Jesus Perez, Diana O Perkins, Albert R Powers, Jack Rogers, Fred W Sabb, Jason Schiffman, Jai L Shah, Steven M Silverstein, Stefan Smesny, William S Stone, Walid Yassin, Gregory P Strauss, Judy L Thompson, Rachel Upthegrove, Swapna Verma, Jijun Wang, Daniel H Wolf, Patrick D McGorry, Rene S Kahn, John M Kane, Alan Anticevic, Carrie E Bearden, Dominic Dwyer, Tashrif Billah, Sylvain Bouix, Ofer Pasternak, Martha E Shenton, Scott W Woods, Barnaby Nelson, Guillermo A Cecchi, Cheryl M Corcoran, Phillip M Wolff
{"title":"收集语言、语音声学和面部表情来预测精神病和其他临床结果:来自AMP®SCZ计划的策略。","authors":"Zarina R Bilgrami, Eduardo Castro, Carla Agurto, Einat Liebenthal, Michaela Ennis, Justin T Baker, Isabelle Scott, Beau-Luke Colton, Kang Ik K Cho, Linying Li, Zailyn Tamayo, Mara Henecks, Habiballah Rahimi Eichi, Tae'lar Henry, Jean Addington, Luis K Alameda, Celso Arango, Nicholas J K Breitborde, Matthew R Broome, Kristin S Cadenhead, Monica E Calkins, Eric Yu Hai Chen, Jimmy Choi, Philippe Conus, Barbara A Cornblatt, Lauren M Ellman, Paolo Fusar-Poli, Pablo A Gaspar, Carla Gerber, Louise Birkedal Glenthøj, Leslie E Horton, Christy Hui, Joseph Kambeitz, Lana Kambeitz-Ilankovic, Matcheri S Keshavan, Sung-Wan Kim, Nikolaos Koutsouleris, Jun Soo Kwon, Kerstin Langbein, Daniel Mamah, Covadonga M Diaz-Caneja, Daniel H Mathalon, Vijay A Mittal, Merete Nordentoft, Godfrey D Pearlson, Jesus Perez, Diana O Perkins, Albert R Powers, Jack Rogers, Fred W Sabb, Jason Schiffman, Jai L Shah, Steven M Silverstein, Stefan Smesny, William S Stone, Walid Yassin, Gregory P Strauss, Judy L Thompson, Rachel Upthegrove, Swapna Verma, Jijun Wang, Daniel H Wolf, Patrick D McGorry, Rene S Kahn, John M Kane, Alan Anticevic, Carrie E Bearden, Dominic Dwyer, Tashrif Billah, Sylvain Bouix, Ofer Pasternak, Martha E Shenton, Scott W Woods, Barnaby Nelson, Guillermo A Cecchi, Cheryl M Corcoran, Phillip M Wolff","doi":"10.1038/s41537-025-00669-z","DOIUrl":null,"url":null,"abstract":"<p><p>Speech-based detection of early psychosis is progressing at a rapid pace. Within this evolving field, the Accelerating Medicines Partnership® in Schizophrenia (AMP® SCZ) is uniquely positioned to deepen our understanding of how language and related behaviors reflect early psychosis. We begin with detailed standard operating procedures (SOPs) that govern every stage of collection. These SOPs specify how to elicit speech, capture facial expressions, and record acoustics in synchronized audio-video files-both on-site and through remote platforms. We then explain how we chose our sampling tasks, hardware, and software, and how we built streamlined pipelines for data acquisition, aggregation, and processing. Robust quality-assurance and quality-control (QA/QC) routines, along with standardized interviewer training and certification, ensure data integrity across sites. Using natural language processing parsers, large language models, and machine-learning classifiers, we analyzed Data Release 3.0 to uncover systematic grammatical markers of psychosis risk. Speakers at clinical high risk (CHR) produced more referential language but fewer adjectives, adverbs, and nouns than community controls (CC), a pattern that replicated across sampling tasks. Some effects were task-specific: CHR participants showed elevated use of complex syntactic embeddings in two elicitation conditions but not the third, underscoring the importance of the language sampling task. Together, these results demonstrate how computational linguistics can turn everyday speech into a scalable, objective biomarker, paving the way for earlier and more precise detection of psychosis.Video Link: https://vimeo.com/1112291965?fl=pl&fe=sh.</p>","PeriodicalId":74758,"journal":{"name":"Schizophrenia (Heidelberg, Germany)","volume":"11 1","pages":"125"},"PeriodicalIF":4.1000,"publicationDate":"2025-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12528486/pdf/","citationCount":"0","resultStr":"{\"title\":\"Collecting language, speech acoustics, and facial expression to predict psychosis and other clinical outcomes: strategies from the AMP® SCZ initiative.\",\"authors\":\"Zarina R Bilgrami, Eduardo Castro, Carla Agurto, Einat Liebenthal, Michaela Ennis, Justin T Baker, Isabelle Scott, Beau-Luke Colton, Kang Ik K Cho, Linying Li, Zailyn Tamayo, Mara Henecks, Habiballah Rahimi Eichi, Tae'lar Henry, Jean Addington, Luis K Alameda, Celso Arango, Nicholas J K Breitborde, Matthew R Broome, Kristin S Cadenhead, Monica E Calkins, Eric Yu Hai Chen, Jimmy Choi, Philippe Conus, Barbara A Cornblatt, Lauren M Ellman, Paolo Fusar-Poli, Pablo A Gaspar, Carla Gerber, Louise Birkedal Glenthøj, Leslie E Horton, Christy Hui, Joseph Kambeitz, Lana Kambeitz-Ilankovic, Matcheri S Keshavan, Sung-Wan Kim, Nikolaos Koutsouleris, Jun Soo Kwon, Kerstin Langbein, Daniel Mamah, Covadonga M Diaz-Caneja, Daniel H Mathalon, Vijay A Mittal, Merete Nordentoft, Godfrey D Pearlson, Jesus Perez, Diana O Perkins, Albert R Powers, Jack Rogers, Fred W Sabb, Jason Schiffman, Jai L Shah, Steven M Silverstein, Stefan Smesny, William S Stone, Walid Yassin, Gregory P Strauss, Judy L Thompson, Rachel Upthegrove, Swapna Verma, Jijun Wang, Daniel H Wolf, Patrick D McGorry, Rene S Kahn, John M Kane, Alan Anticevic, Carrie E Bearden, Dominic Dwyer, Tashrif Billah, Sylvain Bouix, Ofer Pasternak, Martha E Shenton, Scott W Woods, Barnaby Nelson, Guillermo A Cecchi, Cheryl M Corcoran, Phillip M Wolff\",\"doi\":\"10.1038/s41537-025-00669-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Speech-based detection of early psychosis is progressing at a rapid pace. Within this evolving field, the Accelerating Medicines Partnership® in Schizophrenia (AMP® SCZ) is uniquely positioned to deepen our understanding of how language and related behaviors reflect early psychosis. We begin with detailed standard operating procedures (SOPs) that govern every stage of collection. These SOPs specify how to elicit speech, capture facial expressions, and record acoustics in synchronized audio-video files-both on-site and through remote platforms. We then explain how we chose our sampling tasks, hardware, and software, and how we built streamlined pipelines for data acquisition, aggregation, and processing. Robust quality-assurance and quality-control (QA/QC) routines, along with standardized interviewer training and certification, ensure data integrity across sites. Using natural language processing parsers, large language models, and machine-learning classifiers, we analyzed Data Release 3.0 to uncover systematic grammatical markers of psychosis risk. Speakers at clinical high risk (CHR) produced more referential language but fewer adjectives, adverbs, and nouns than community controls (CC), a pattern that replicated across sampling tasks. Some effects were task-specific: CHR participants showed elevated use of complex syntactic embeddings in two elicitation conditions but not the third, underscoring the importance of the language sampling task. Together, these results demonstrate how computational linguistics can turn everyday speech into a scalable, objective biomarker, paving the way for earlier and more precise detection of psychosis.Video Link: https://vimeo.com/1112291965?fl=pl&fe=sh.</p>\",\"PeriodicalId\":74758,\"journal\":{\"name\":\"Schizophrenia (Heidelberg, Germany)\",\"volume\":\"11 1\",\"pages\":\"125\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12528486/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Schizophrenia (Heidelberg, Germany)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s41537-025-00669-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PSYCHIATRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Schizophrenia (Heidelberg, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s41537-025-00669-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PSYCHIATRY","Score":null,"Total":0}
引用次数: 0

摘要

基于语音的早期精神病检测正在快速发展。在这个不断发展的领域,精神分裂症加速药物合作伙伴®(AMP®SCZ)具有独特的优势,可以加深我们对语言和相关行为如何反映早期精神病的理解。我们从管理每个收集阶段的详细标准操作程序(sop)开始。这些标准程序规定了如何引出语音,捕捉面部表情,并在同步音频-视频文件中记录声学-无论是现场还是通过远程平台。然后,我们将解释如何选择采样任务、硬件和软件,以及如何构建用于数据采集、聚合和处理的流线型管道。健全的质量保证和质量控制(QA/QC)程序,以及标准化的采访者培训和认证,确保了各站点数据的完整性。使用自然语言处理解析器、大型语言模型和机器学习分类器,我们分析了Data Release 3.0,以揭示精神病风险的系统语法标记。临床高危人群(CHR)的说话者比社区对照组(CC)使用了更多的参考语言,但更少的形容词、副词和名词,这种模式在抽样任务中也得到了复制。一些影响是任务特异性的:CHR参与者在两种启发条件下显示出复杂句法嵌入的使用增加,但在第三种条件下没有,强调了语言抽样任务的重要性。总之,这些结果展示了计算语言学如何将日常语言转化为可扩展的、客观的生物标志物,为更早、更精确地检测精神病铺平了道路。视频链接:https://vimeo.com/1112291965?fl=pl&fe=sh。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Collecting language, speech acoustics, and facial expression to predict psychosis and other clinical outcomes: strategies from the AMP® SCZ initiative.

Collecting language, speech acoustics, and facial expression to predict psychosis and other clinical outcomes: strategies from the AMP® SCZ initiative.

Collecting language, speech acoustics, and facial expression to predict psychosis and other clinical outcomes: strategies from the AMP® SCZ initiative.

Collecting language, speech acoustics, and facial expression to predict psychosis and other clinical outcomes: strategies from the AMP® SCZ initiative.

Speech-based detection of early psychosis is progressing at a rapid pace. Within this evolving field, the Accelerating Medicines Partnership® in Schizophrenia (AMP® SCZ) is uniquely positioned to deepen our understanding of how language and related behaviors reflect early psychosis. We begin with detailed standard operating procedures (SOPs) that govern every stage of collection. These SOPs specify how to elicit speech, capture facial expressions, and record acoustics in synchronized audio-video files-both on-site and through remote platforms. We then explain how we chose our sampling tasks, hardware, and software, and how we built streamlined pipelines for data acquisition, aggregation, and processing. Robust quality-assurance and quality-control (QA/QC) routines, along with standardized interviewer training and certification, ensure data integrity across sites. Using natural language processing parsers, large language models, and machine-learning classifiers, we analyzed Data Release 3.0 to uncover systematic grammatical markers of psychosis risk. Speakers at clinical high risk (CHR) produced more referential language but fewer adjectives, adverbs, and nouns than community controls (CC), a pattern that replicated across sampling tasks. Some effects were task-specific: CHR participants showed elevated use of complex syntactic embeddings in two elicitation conditions but not the third, underscoring the importance of the language sampling task. Together, these results demonstrate how computational linguistics can turn everyday speech into a scalable, objective biomarker, paving the way for earlier and more precise detection of psychosis.Video Link: https://vimeo.com/1112291965?fl=pl&fe=sh.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信