电子健康记录中母婴联动算法的推导与验证。

IF 4.6 2区 医学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Colin M Rogerson, Christopher W Bartlett, John Price, Lang Li, Eneida A Mendonca, Shaun Grannis
{"title":"电子健康记录中母婴联动算法的推导与验证。","authors":"Colin M Rogerson, Christopher W Bartlett, John Price, Lang Li, Eneida A Mendonca, Shaun Grannis","doi":"10.1093/jamia/ocaf177","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>We created a probabilistic maternal-child electronic health record (EHR) linkage algorithm to promote clinical research in maternal-child health.</p><p><strong>Methods: </strong>We used EHR data from 1994 to 2024 to create an XGBoost model to predict maternal-child linkages. The model used standard EHR elements as predictor variables, including first name, last name, birthdate, address, phone number, email, and an EHR-embedded maternal-child indicator as the deterministic outcome.</p><p><strong>Results: </strong>From 82 million unique records, 6.2 billion potential pairs met blocking criteria. Of the potential pairs, 33 364 674 contained the deterministic indicator and were used as cases, and an equal number of controls were randomly sampled. The final model obtained an accuracy of 92%, a precision of 98%, a recall of 87%, and an F1-score of 92%.</p><p><strong>Conclusion: </strong>We derived and validated a probabilistic maternal-child linkage algorithm using routinely collected EHR data elements that could benefit future observational research in maternal-child health.</p>","PeriodicalId":50016,"journal":{"name":"Journal of the American Medical Informatics Association","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Derivation and validation of an algorithm for maternal-child linkage in electronic health records.\",\"authors\":\"Colin M Rogerson, Christopher W Bartlett, John Price, Lang Li, Eneida A Mendonca, Shaun Grannis\",\"doi\":\"10.1093/jamia/ocaf177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>We created a probabilistic maternal-child electronic health record (EHR) linkage algorithm to promote clinical research in maternal-child health.</p><p><strong>Methods: </strong>We used EHR data from 1994 to 2024 to create an XGBoost model to predict maternal-child linkages. The model used standard EHR elements as predictor variables, including first name, last name, birthdate, address, phone number, email, and an EHR-embedded maternal-child indicator as the deterministic outcome.</p><p><strong>Results: </strong>From 82 million unique records, 6.2 billion potential pairs met blocking criteria. Of the potential pairs, 33 364 674 contained the deterministic indicator and were used as cases, and an equal number of controls were randomly sampled. The final model obtained an accuracy of 92%, a precision of 98%, a recall of 87%, and an F1-score of 92%.</p><p><strong>Conclusion: </strong>We derived and validated a probabilistic maternal-child linkage algorithm using routinely collected EHR data elements that could benefit future observational research in maternal-child health.</p>\",\"PeriodicalId\":50016,\"journal\":{\"name\":\"Journal of the American Medical Informatics Association\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Medical Informatics Association\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1093/jamia/ocaf177\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Medical Informatics Association","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1093/jamia/ocaf177","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

为了促进母婴健康的临床研究,我们创建了一个概率母婴电子健康记录(EHR)联动算法。方法:利用1994 ~ 2024年的电子病历数据,建立XGBoost模型预测母婴联系。该模型使用标准的电子病历元素作为预测变量,包括名字、姓氏、出生日期、地址、电话号码、电子邮件,以及嵌入电子病历的母婴指标作为确定性结果。结果:从8200万条唯一记录中,有62亿个潜在的对符合阻断标准。在潜在对中,有33 364 674对含有确定性指标作为病例,并随机抽取相同数量的对照。最终模型的准确率为92%,精密度为98%,召回率为87%,f1得分为92%。结论:我们使用常规收集的电子病历数据元素推导并验证了一种概率母婴关联算法,该算法可用于未来的母婴健康观察研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Derivation and validation of an algorithm for maternal-child linkage in electronic health records.

Introduction: We created a probabilistic maternal-child electronic health record (EHR) linkage algorithm to promote clinical research in maternal-child health.

Methods: We used EHR data from 1994 to 2024 to create an XGBoost model to predict maternal-child linkages. The model used standard EHR elements as predictor variables, including first name, last name, birthdate, address, phone number, email, and an EHR-embedded maternal-child indicator as the deterministic outcome.

Results: From 82 million unique records, 6.2 billion potential pairs met blocking criteria. Of the potential pairs, 33 364 674 contained the deterministic indicator and were used as cases, and an equal number of controls were randomly sampled. The final model obtained an accuracy of 92%, a precision of 98%, a recall of 87%, and an F1-score of 92%.

Conclusion: We derived and validated a probabilistic maternal-child linkage algorithm using routinely collected EHR data elements that could benefit future observational research in maternal-child health.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of the American Medical Informatics Association
Journal of the American Medical Informatics Association 医学-计算机:跨学科应用
CiteScore
14.50
自引率
7.80%
发文量
230
审稿时长
3-8 weeks
期刊介绍: JAMIA is AMIA''s premier peer-reviewed journal for biomedical and health informatics. Covering the full spectrum of activities in the field, JAMIA includes informatics articles in the areas of clinical care, clinical research, translational science, implementation science, imaging, education, consumer health, public health, and policy. JAMIA''s articles describe innovative informatics research and systems that help to advance biomedical science and to promote health. Case reports, perspectives and reviews also help readers stay connected with the most important informatics developments in implementation, policy and education.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信