癌症空间组学的新兴人工智能方法。

IF 11.8 2区 生物学 Q1 MULTIDISCIPLINARY SCIENCES
Javad Noorbakhsh, Ali Foroughi Pour, Jeffrey Chuang
{"title":"癌症空间组学的新兴人工智能方法。","authors":"Javad Noorbakhsh, Ali Foroughi Pour, Jeffrey Chuang","doi":"10.1093/gigascience/giaf128","DOIUrl":null,"url":null,"abstract":"<p><p>Technological breakthroughs in spatial omics and artificial intelligence (AI) have the potential to transform the understanding of cancer cells and the tumor microenvironment. Here we review the role of AI in spatial omics, discussing the current state-of-the-art and further needs to decipher cancer biology from large-scale spatial tissue data. An overarching challenge is the development of interpretable spatial AI models, an activity which demands not only improved data integration, but also new conceptual frameworks. We discuss emerging paradigms - in particular data-driven spatial AI, constraint-based spatial AI, and mechanistic spatial modeling - as well as the importance of integrating AI with hypothesis-driven strategies and model systems to realize the value of cancer spatial information.</p>","PeriodicalId":12581,"journal":{"name":"GigaScience","volume":" ","pages":""},"PeriodicalIF":11.8000,"publicationDate":"2025-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Emerging AI Approaches for Cancer Spatial Omics.\",\"authors\":\"Javad Noorbakhsh, Ali Foroughi Pour, Jeffrey Chuang\",\"doi\":\"10.1093/gigascience/giaf128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Technological breakthroughs in spatial omics and artificial intelligence (AI) have the potential to transform the understanding of cancer cells and the tumor microenvironment. Here we review the role of AI in spatial omics, discussing the current state-of-the-art and further needs to decipher cancer biology from large-scale spatial tissue data. An overarching challenge is the development of interpretable spatial AI models, an activity which demands not only improved data integration, but also new conceptual frameworks. We discuss emerging paradigms - in particular data-driven spatial AI, constraint-based spatial AI, and mechanistic spatial modeling - as well as the importance of integrating AI with hypothesis-driven strategies and model systems to realize the value of cancer spatial information.</p>\",\"PeriodicalId\":12581,\"journal\":{\"name\":\"GigaScience\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":11.8000,\"publicationDate\":\"2025-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GigaScience\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/gigascience/giaf128\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GigaScience","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/gigascience/giaf128","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

空间组学和人工智能(AI)方面的技术突破有可能改变人们对癌细胞和肿瘤微环境的认识。在这里,我们回顾了人工智能在空间组学中的作用,讨论了从大规模空间组织数据中破译癌症生物学的最新技术和进一步的需求。一个首要的挑战是开发可解释的空间人工智能模型,这一活动不仅需要改进数据集成,还需要新的概念框架。我们讨论了新兴的范式-特别是数据驱动的空间人工智能,基于约束的空间人工智能和机械空间建模-以及将人工智能与假设驱动的策略和模型系统集成以实现癌症空间信息价值的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Emerging AI Approaches for Cancer Spatial Omics.

Technological breakthroughs in spatial omics and artificial intelligence (AI) have the potential to transform the understanding of cancer cells and the tumor microenvironment. Here we review the role of AI in spatial omics, discussing the current state-of-the-art and further needs to decipher cancer biology from large-scale spatial tissue data. An overarching challenge is the development of interpretable spatial AI models, an activity which demands not only improved data integration, but also new conceptual frameworks. We discuss emerging paradigms - in particular data-driven spatial AI, constraint-based spatial AI, and mechanistic spatial modeling - as well as the importance of integrating AI with hypothesis-driven strategies and model systems to realize the value of cancer spatial information.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
GigaScience
GigaScience MULTIDISCIPLINARY SCIENCES-
CiteScore
15.50
自引率
1.10%
发文量
119
审稿时长
1 weeks
期刊介绍: GigaScience seeks to transform data dissemination and utilization in the life and biomedical sciences. As an online open-access open-data journal, it specializes in publishing "big-data" studies encompassing various fields. Its scope includes not only "omic" type data and the fields of high-throughput biology currently serviced by large public repositories, but also the growing range of more difficult-to-access data, such as imaging, neuroscience, ecology, cohort data, systems biology and other new types of large-scale shareable data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信