基于化学发光和生物发光的光动力疗法研究进展及构建策略

IF 3 4区 化学 Q3 CHEMISTRY, PHYSICAL
Yuqin Ge, Shuyan Xue, Zhonghua Chen
{"title":"基于化学发光和生物发光的光动力疗法研究进展及构建策略","authors":"Yuqin Ge,&nbsp;Shuyan Xue,&nbsp;Zhonghua Chen","doi":"10.1002/cptc.202500145","DOIUrl":null,"url":null,"abstract":"<p>Photodynamic therapy (PDT) is a noninvasive therapeutic approach for treating cancer and various other diseases. A PDT system relies on three key components: a light source, photosensitizers (PSs), and oxygen. Conventional PDT, which utilizes external light sources to activate PSs, has already been approved for clinical use. However, external light has limited tissue penetration depth and may sometimes cause photoallergic reactions. As a result, internal light sources, such as chemiluminescence (CL) and bioluminescence (BL), have emerged as promising alternatives for future PDT applications. In this review, recent advances in CL/BL-based PDT systems over the past five years are summarized and future trends and design strategies are proposed to guide further research. Specifically, 1) “All-in-one”; 2) covalent linkage; 3) direct PDT for CL-based PDT systems and 1) fusion protein; 2) gene transfection and 3) engineered microorganisms for BL-based PDT systems are discussed. Among these strategies, the “All-in-one” approach—which encapsulates all necessary components within a single delivery system—is possibly the most feasible for optimizing PDT efficacy and the easiest to integrate with chemotherapy or immunotherapy. To advance CL/BL-based PDT toward clinical translation, further evaluation is needed regarding the toxicity and cost of well-designed systems.</p>","PeriodicalId":10108,"journal":{"name":"ChemPhotoChem","volume":"9 10","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/cptc.202500145","citationCount":"0","resultStr":"{\"title\":\"Recent Advances and Constructing Strategies of Chemiluminescence- and Bioluminescence-Based Photodynamic Therapy\",\"authors\":\"Yuqin Ge,&nbsp;Shuyan Xue,&nbsp;Zhonghua Chen\",\"doi\":\"10.1002/cptc.202500145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Photodynamic therapy (PDT) is a noninvasive therapeutic approach for treating cancer and various other diseases. A PDT system relies on three key components: a light source, photosensitizers (PSs), and oxygen. Conventional PDT, which utilizes external light sources to activate PSs, has already been approved for clinical use. However, external light has limited tissue penetration depth and may sometimes cause photoallergic reactions. As a result, internal light sources, such as chemiluminescence (CL) and bioluminescence (BL), have emerged as promising alternatives for future PDT applications. In this review, recent advances in CL/BL-based PDT systems over the past five years are summarized and future trends and design strategies are proposed to guide further research. Specifically, 1) “All-in-one”; 2) covalent linkage; 3) direct PDT for CL-based PDT systems and 1) fusion protein; 2) gene transfection and 3) engineered microorganisms for BL-based PDT systems are discussed. Among these strategies, the “All-in-one” approach—which encapsulates all necessary components within a single delivery system—is possibly the most feasible for optimizing PDT efficacy and the easiest to integrate with chemotherapy or immunotherapy. To advance CL/BL-based PDT toward clinical translation, further evaluation is needed regarding the toxicity and cost of well-designed systems.</p>\",\"PeriodicalId\":10108,\"journal\":{\"name\":\"ChemPhotoChem\",\"volume\":\"9 10\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/cptc.202500145\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemPhotoChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cptc.202500145\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemPhotoChem","FirstCategoryId":"92","ListUrlMain":"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cptc.202500145","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

光动力疗法(PDT)是一种治疗癌症和其他各种疾病的无创治疗方法。PDT系统依赖于三个关键组件:光源、光敏剂(ps)和氧气。传统的PDT利用外部光源激活PSs,已经被批准用于临床。然而,外部光对组织的穿透深度有限,有时可能引起光过敏反应。因此,内部光源,如化学发光(CL)和生物发光(BL),已经成为未来PDT应用的有希望的替代方案。本文总结了近五年来基于CL/ bl的PDT系统的最新进展,并提出了未来的发展趋势和设计策略,以指导进一步的研究。具体而言,1)“一体式”;2)共价键;3)基于cl的PDT系统的直接PDT和1)融合蛋白;讨论了基于bl的PDT系统的基因转染和工程微生物。在这些策略中,“all -in-one”方法——将所有必要的成分封装在一个单一的递送系统中——可能是优化PDT疗效最可行的方法,也是最容易与化疗或免疫治疗相结合的方法。为了将基于CL/ bl的PDT推向临床应用,需要进一步评估设计良好的系统的毒性和成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Recent Advances and Constructing Strategies of Chemiluminescence- and Bioluminescence-Based Photodynamic Therapy

Recent Advances and Constructing Strategies of Chemiluminescence- and Bioluminescence-Based Photodynamic Therapy

Photodynamic therapy (PDT) is a noninvasive therapeutic approach for treating cancer and various other diseases. A PDT system relies on three key components: a light source, photosensitizers (PSs), and oxygen. Conventional PDT, which utilizes external light sources to activate PSs, has already been approved for clinical use. However, external light has limited tissue penetration depth and may sometimes cause photoallergic reactions. As a result, internal light sources, such as chemiluminescence (CL) and bioluminescence (BL), have emerged as promising alternatives for future PDT applications. In this review, recent advances in CL/BL-based PDT systems over the past five years are summarized and future trends and design strategies are proposed to guide further research. Specifically, 1) “All-in-one”; 2) covalent linkage; 3) direct PDT for CL-based PDT systems and 1) fusion protein; 2) gene transfection and 3) engineered microorganisms for BL-based PDT systems are discussed. Among these strategies, the “All-in-one” approach—which encapsulates all necessary components within a single delivery system—is possibly the most feasible for optimizing PDT efficacy and the easiest to integrate with chemotherapy or immunotherapy. To advance CL/BL-based PDT toward clinical translation, further evaluation is needed regarding the toxicity and cost of well-designed systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemPhotoChem
ChemPhotoChem Chemistry-Physical and Theoretical Chemistry
CiteScore
5.80
自引率
5.40%
发文量
165
期刊介绍: Light plays a crucial role in natural processes and leads to exciting phenomena in molecules and materials. ChemPhotoChem welcomes exceptional international research in the entire scope of pure and applied photochemistry, photobiology, and photophysics. Our thorough editorial practices aid us in publishing authoritative research fast. We support the photochemistry community to be a leading light in science. We understand the huge pressures the scientific community is facing every day and we want to support you. Chemistry Europe is an association of 16 chemical societies from 15 European countries. Run by chemists, for chemists—we evaluate, publish, disseminate, and amplify the scientific excellence of chemistry researchers from around the globe.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信