{"title":"单组分螺旋桨样分子的有机室温磷光","authors":"Hong Pan, Yipeng Zhang, Yanqing Ge","doi":"10.1002/cptc.202500168","DOIUrl":null,"url":null,"abstract":"<p>Organic room-temperature phosphorescence (RTP) materials have received considerable research interest in photoelectric devices, sensing and imaging, and information encryption owing to the advantageous properties, including low toxicity, broad structural tunability, outstanding processability, and good biocompatibility. Despite the progress made in the past two decades, obstacles such as limited material structure and complex regulation processes are still persisting. In this minireview, the research advances in the RTP of propeller-like organic molecules according to the molecular skeleton will be summarized. Future perspectives and remaining challenges will be discussed at the end.</p>","PeriodicalId":10108,"journal":{"name":"ChemPhotoChem","volume":"9 10","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Organic Room-Temperature Phosphorescence From Single-Component Propeller-Like Molecules\",\"authors\":\"Hong Pan, Yipeng Zhang, Yanqing Ge\",\"doi\":\"10.1002/cptc.202500168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Organic room-temperature phosphorescence (RTP) materials have received considerable research interest in photoelectric devices, sensing and imaging, and information encryption owing to the advantageous properties, including low toxicity, broad structural tunability, outstanding processability, and good biocompatibility. Despite the progress made in the past two decades, obstacles such as limited material structure and complex regulation processes are still persisting. In this minireview, the research advances in the RTP of propeller-like organic molecules according to the molecular skeleton will be summarized. Future perspectives and remaining challenges will be discussed at the end.</p>\",\"PeriodicalId\":10108,\"journal\":{\"name\":\"ChemPhotoChem\",\"volume\":\"9 10\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemPhotoChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cptc.202500168\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemPhotoChem","FirstCategoryId":"92","ListUrlMain":"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cptc.202500168","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Organic Room-Temperature Phosphorescence From Single-Component Propeller-Like Molecules
Organic room-temperature phosphorescence (RTP) materials have received considerable research interest in photoelectric devices, sensing and imaging, and information encryption owing to the advantageous properties, including low toxicity, broad structural tunability, outstanding processability, and good biocompatibility. Despite the progress made in the past two decades, obstacles such as limited material structure and complex regulation processes are still persisting. In this minireview, the research advances in the RTP of propeller-like organic molecules according to the molecular skeleton will be summarized. Future perspectives and remaining challenges will be discussed at the end.
ChemPhotoChemChemistry-Physical and Theoretical Chemistry
CiteScore
5.80
自引率
5.40%
发文量
165
期刊介绍:
Light plays a crucial role in natural processes and leads to exciting phenomena in molecules and materials. ChemPhotoChem welcomes exceptional international research in the entire scope of pure and applied photochemistry, photobiology, and photophysics. Our thorough editorial practices aid us in publishing authoritative research fast. We support the photochemistry community to be a leading light in science.
We understand the huge pressures the scientific community is facing every day and we want to support you. Chemistry Europe is an association of 16 chemical societies from 15 European countries. Run by chemists, for chemists—we evaluate, publish, disseminate, and amplify the scientific excellence of chemistry researchers from around the globe.