单组分螺旋桨样分子的有机室温磷光

IF 3 4区 化学 Q3 CHEMISTRY, PHYSICAL
Hong Pan, Yipeng Zhang, Yanqing Ge
{"title":"单组分螺旋桨样分子的有机室温磷光","authors":"Hong Pan,&nbsp;Yipeng Zhang,&nbsp;Yanqing Ge","doi":"10.1002/cptc.202500168","DOIUrl":null,"url":null,"abstract":"<p>Organic room-temperature phosphorescence (RTP) materials have received considerable research interest in photoelectric devices, sensing and imaging, and information encryption owing to the advantageous properties, including low toxicity, broad structural tunability, outstanding processability, and good biocompatibility. Despite the progress made in the past two decades, obstacles such as limited material structure and complex regulation processes are still persisting. In this minireview, the research advances in the RTP of propeller-like organic molecules according to the molecular skeleton will be summarized. Future perspectives and remaining challenges will be discussed at the end.</p>","PeriodicalId":10108,"journal":{"name":"ChemPhotoChem","volume":"9 10","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Organic Room-Temperature Phosphorescence From Single-Component Propeller-Like Molecules\",\"authors\":\"Hong Pan,&nbsp;Yipeng Zhang,&nbsp;Yanqing Ge\",\"doi\":\"10.1002/cptc.202500168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Organic room-temperature phosphorescence (RTP) materials have received considerable research interest in photoelectric devices, sensing and imaging, and information encryption owing to the advantageous properties, including low toxicity, broad structural tunability, outstanding processability, and good biocompatibility. Despite the progress made in the past two decades, obstacles such as limited material structure and complex regulation processes are still persisting. In this minireview, the research advances in the RTP of propeller-like organic molecules according to the molecular skeleton will be summarized. Future perspectives and remaining challenges will be discussed at the end.</p>\",\"PeriodicalId\":10108,\"journal\":{\"name\":\"ChemPhotoChem\",\"volume\":\"9 10\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemPhotoChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cptc.202500168\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemPhotoChem","FirstCategoryId":"92","ListUrlMain":"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cptc.202500168","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

有机室温磷光(RTP)材料具有低毒性、广泛的结构可调性、优异的可加工性和良好的生物相容性等优点,在光电器件、传感成像和信息加密等领域得到了广泛的研究兴趣。尽管在过去的二十年中取得了进展,但材料结构有限、监管过程复杂等障碍仍然存在。本文从分子骨架的角度综述了近年来螺旋桨类有机分子RTP的研究进展。未来的前景和仍然存在的挑战将在最后讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Organic Room-Temperature Phosphorescence From Single-Component Propeller-Like Molecules

Organic Room-Temperature Phosphorescence From Single-Component Propeller-Like Molecules

Organic room-temperature phosphorescence (RTP) materials have received considerable research interest in photoelectric devices, sensing and imaging, and information encryption owing to the advantageous properties, including low toxicity, broad structural tunability, outstanding processability, and good biocompatibility. Despite the progress made in the past two decades, obstacles such as limited material structure and complex regulation processes are still persisting. In this minireview, the research advances in the RTP of propeller-like organic molecules according to the molecular skeleton will be summarized. Future perspectives and remaining challenges will be discussed at the end.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemPhotoChem
ChemPhotoChem Chemistry-Physical and Theoretical Chemistry
CiteScore
5.80
自引率
5.40%
发文量
165
期刊介绍: Light plays a crucial role in natural processes and leads to exciting phenomena in molecules and materials. ChemPhotoChem welcomes exceptional international research in the entire scope of pure and applied photochemistry, photobiology, and photophysics. Our thorough editorial practices aid us in publishing authoritative research fast. We support the photochemistry community to be a leading light in science. We understand the huge pressures the scientific community is facing every day and we want to support you. Chemistry Europe is an association of 16 chemical societies from 15 European countries. Run by chemists, for chemists—we evaluate, publish, disseminate, and amplify the scientific excellence of chemistry researchers from around the globe.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信