Henri Arno, Klaas Mulier, Joke Baeck, Thomas Demeester
{"title":"基于句子级解释的文本和表格数据的业务失败预测","authors":"Henri Arno, Klaas Mulier, Joke Baeck, Thomas Demeester","doi":"10.1007/s10479-025-06574-z","DOIUrl":null,"url":null,"abstract":"<div><p>Business failure prediction models are crucial in high-stakes domains like banking, insurance, and investing. In this paper, we propose an interpretable model that combines numerical and sentence-level textual features through a well-known attention mechanism. Our model demonstrates competitive performance across various metrics, and the attention weights help identify sentences intuitively linked to business failure, offering a form of interpretability. Furthermore, our findings highlight the strength of traditional financial ratios for business failure prediction while textual data—particularly when represented as keywords—is mainly useful to correctly classify corporate disclosures where the possibility of failure is explicitly mentioned.</p></div>","PeriodicalId":8215,"journal":{"name":"Annals of Operations Research","volume":"353 2","pages":"667 - 692"},"PeriodicalIF":4.5000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10479-025-06574-z.pdf","citationCount":"0","resultStr":"{\"title\":\"Business Failure Prediction From Textual and Tabular Data With Sentence-Level Interpretations\",\"authors\":\"Henri Arno, Klaas Mulier, Joke Baeck, Thomas Demeester\",\"doi\":\"10.1007/s10479-025-06574-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Business failure prediction models are crucial in high-stakes domains like banking, insurance, and investing. In this paper, we propose an interpretable model that combines numerical and sentence-level textual features through a well-known attention mechanism. Our model demonstrates competitive performance across various metrics, and the attention weights help identify sentences intuitively linked to business failure, offering a form of interpretability. Furthermore, our findings highlight the strength of traditional financial ratios for business failure prediction while textual data—particularly when represented as keywords—is mainly useful to correctly classify corporate disclosures where the possibility of failure is explicitly mentioned.</p></div>\",\"PeriodicalId\":8215,\"journal\":{\"name\":\"Annals of Operations Research\",\"volume\":\"353 2\",\"pages\":\"667 - 692\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10479-025-06574-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Operations Research\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10479-025-06574-z\",\"RegionNum\":3,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Operations Research","FirstCategoryId":"91","ListUrlMain":"https://link.springer.com/article/10.1007/s10479-025-06574-z","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
Business Failure Prediction From Textual and Tabular Data With Sentence-Level Interpretations
Business failure prediction models are crucial in high-stakes domains like banking, insurance, and investing. In this paper, we propose an interpretable model that combines numerical and sentence-level textual features through a well-known attention mechanism. Our model demonstrates competitive performance across various metrics, and the attention weights help identify sentences intuitively linked to business failure, offering a form of interpretability. Furthermore, our findings highlight the strength of traditional financial ratios for business failure prediction while textual data—particularly when represented as keywords—is mainly useful to correctly classify corporate disclosures where the possibility of failure is explicitly mentioned.
期刊介绍:
The Annals of Operations Research publishes peer-reviewed original articles dealing with key aspects of operations research, including theory, practice, and computation. The journal publishes full-length research articles, short notes, expositions and surveys, reports on computational studies, and case studies that present new and innovative practical applications.
In addition to regular issues, the journal publishes periodic special volumes that focus on defined fields of operations research, ranging from the highly theoretical to the algorithmic and the applied. These volumes have one or more Guest Editors who are responsible for collecting the papers and overseeing the refereeing process.