有条件地披露量子资源的秘密

IF 5.1 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Quantum Pub Date : 2025-10-16 DOI:10.22331/q-2025-10-16-1885
Vahid R. Asadi, Kohdai Kuroiwa, Debbie Leung, Alex May, Sabrina Pasterski, Chris Waddell
{"title":"有条件地披露量子资源的秘密","authors":"Vahid R. Asadi, Kohdai Kuroiwa, Debbie Leung, Alex May, Sabrina Pasterski, Chris Waddell","doi":"10.22331/q-2025-10-16-1885","DOIUrl":null,"url":null,"abstract":"The conditional disclosure of secrets (CDS) primitive is among the simplest cryptographic settings in which to study the relationship between communication, randomness, and security. CDS involves two parties, Alice and Bob, who do not communicate but who wish to reveal a secret $z$ to a referee if and only if a Boolean function $f$ has $f(x,y)=1$. Alice knows $x,z$, Bob knows $y$, and the referee knows $x,y$. Recently, a quantum analogue of this primitive called CDQS was defined and related to $f$-routing, a task studied in the context of quantum position-verification. CDQS has the same inputs, outputs, and communication pattern as CDS but allows the use of shared entanglement and quantum messages. We initiate the systematic study of CDQS, with the aim of better understanding the relationship between privacy and quantum resources in the information theoretic setting. We begin by looking for quantum analogues of results already established in the classical CDS literature. Doing so we establish a number of basic properties of CDQS, including lower bounds on entanglement and communication stated in terms of measures of communication complexity. Because of the close relationship to the $f$-routing position-verification scheme, our results have relevance to the security of these schemes.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"1 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conditional disclosure of secrets with quantum resources\",\"authors\":\"Vahid R. Asadi, Kohdai Kuroiwa, Debbie Leung, Alex May, Sabrina Pasterski, Chris Waddell\",\"doi\":\"10.22331/q-2025-10-16-1885\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The conditional disclosure of secrets (CDS) primitive is among the simplest cryptographic settings in which to study the relationship between communication, randomness, and security. CDS involves two parties, Alice and Bob, who do not communicate but who wish to reveal a secret $z$ to a referee if and only if a Boolean function $f$ has $f(x,y)=1$. Alice knows $x,z$, Bob knows $y$, and the referee knows $x,y$. Recently, a quantum analogue of this primitive called CDQS was defined and related to $f$-routing, a task studied in the context of quantum position-verification. CDQS has the same inputs, outputs, and communication pattern as CDS but allows the use of shared entanglement and quantum messages. We initiate the systematic study of CDQS, with the aim of better understanding the relationship between privacy and quantum resources in the information theoretic setting. We begin by looking for quantum analogues of results already established in the classical CDS literature. Doing so we establish a number of basic properties of CDQS, including lower bounds on entanglement and communication stated in terms of measures of communication complexity. Because of the close relationship to the $f$-routing position-verification scheme, our results have relevance to the security of these schemes.\",\"PeriodicalId\":20807,\"journal\":{\"name\":\"Quantum\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.22331/q-2025-10-16-1885\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2025-10-16-1885","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

秘密的条件披露(CDS)原语是研究通信、随机性和安全性之间关系的最简单的加密设置之一。CDS涉及两方,Alice和Bob,他们不通信,但他们希望向裁判透露一个秘密$z$,当且仅当布尔函数$f$具有$f(x,y)=1$。爱丽丝知道$x $ z$,鲍勃知道$y$,裁判知道$x $y$。最近,这个原语的量子模拟被定义为CDQS,并与量子位置验证中的$f$路由任务相关。CDQS具有与CDS相同的输入、输出和通信模式,但允许使用共享纠缠和量子信息。我们发起了CDQS的系统研究,旨在更好地理解信息理论背景下隐私与量子资源之间的关系。我们首先寻找经典CDS文献中已经建立的结果的量子类似物。这样,我们建立了CDQS的一些基本性质,包括根据通信复杂性度量的纠缠和通信的下界。由于它与$f$路由位置验证方案关系密切,我们的研究结果与这些方案的安全性有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Conditional disclosure of secrets with quantum resources
The conditional disclosure of secrets (CDS) primitive is among the simplest cryptographic settings in which to study the relationship between communication, randomness, and security. CDS involves two parties, Alice and Bob, who do not communicate but who wish to reveal a secret $z$ to a referee if and only if a Boolean function $f$ has $f(x,y)=1$. Alice knows $x,z$, Bob knows $y$, and the referee knows $x,y$. Recently, a quantum analogue of this primitive called CDQS was defined and related to $f$-routing, a task studied in the context of quantum position-verification. CDQS has the same inputs, outputs, and communication pattern as CDS but allows the use of shared entanglement and quantum messages. We initiate the systematic study of CDQS, with the aim of better understanding the relationship between privacy and quantum resources in the information theoretic setting. We begin by looking for quantum analogues of results already established in the classical CDS literature. Doing so we establish a number of basic properties of CDQS, including lower bounds on entanglement and communication stated in terms of measures of communication complexity. Because of the close relationship to the $f$-routing position-verification scheme, our results have relevance to the security of these schemes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quantum
Quantum Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍: Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信