二维反铁磁Fe2As2作为可充电锂离子电池的负极材料:DFT研究

IF 2.9 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES
Pritam Samanta, Ajay Kumar, Prakash Parida
{"title":"二维反铁磁Fe2As2作为可充电锂离子电池的负极材料:DFT研究","authors":"Pritam Samanta, Ajay Kumar, Prakash Parida","doi":"10.1002/adts.202501068","DOIUrl":null,"url":null,"abstract":"Using density functional theory, the anodic performance of the antiferromagnetic Fe<jats:sub>2</jats:sub>As<jats:sub>2</jats:sub> monolayer for lithium‐ion batteries (LIBs) is investigated. This two‐Dimensional (2D) material demonstrates robust dynamical and thermodynamic stability, along with excellent electrode performance. It exhibits inherent metallic properties that contribute to good electrical conductivity, evidenced by a low activation energy barrier of 0.32 eV and a diffusion coefficient of 1.804 cm<jats:sup>2 </jats:sup>s<jats:sup>−1</jats:sup>, facilitating a rapid charging and discharging rate. Relative formation energy is determined to plot the convex hull for the OCV calculation. The calculated OCV is reasonable for use as an anode material for a Li‐ion battery. Additionally, the theoretical storage capacity reaches up to 819.79 mAh g<jats:sup>−1</jats:sup> indicating that it is a safe and sustainable option for a negative electrode application. The small volume expansion for optimal lithium adsorption further supports its suitability as an anode material. Overall, these impressive findings suggest that the Fe<jats:sub>2</jats:sub>As<jats:sub>2</jats:sub> monolayer could serve as a good anode material for LIBs.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"13 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two‐Dimensional Antiferromagnetic Fe2As2 as an Anode Material for Rechargeable Li‐Ion Batteries: A DFT Study\",\"authors\":\"Pritam Samanta, Ajay Kumar, Prakash Parida\",\"doi\":\"10.1002/adts.202501068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using density functional theory, the anodic performance of the antiferromagnetic Fe<jats:sub>2</jats:sub>As<jats:sub>2</jats:sub> monolayer for lithium‐ion batteries (LIBs) is investigated. This two‐Dimensional (2D) material demonstrates robust dynamical and thermodynamic stability, along with excellent electrode performance. It exhibits inherent metallic properties that contribute to good electrical conductivity, evidenced by a low activation energy barrier of 0.32 eV and a diffusion coefficient of 1.804 cm<jats:sup>2 </jats:sup>s<jats:sup>−1</jats:sup>, facilitating a rapid charging and discharging rate. Relative formation energy is determined to plot the convex hull for the OCV calculation. The calculated OCV is reasonable for use as an anode material for a Li‐ion battery. Additionally, the theoretical storage capacity reaches up to 819.79 mAh g<jats:sup>−1</jats:sup> indicating that it is a safe and sustainable option for a negative electrode application. The small volume expansion for optimal lithium adsorption further supports its suitability as an anode material. Overall, these impressive findings suggest that the Fe<jats:sub>2</jats:sub>As<jats:sub>2</jats:sub> monolayer could serve as a good anode material for LIBs.\",\"PeriodicalId\":7219,\"journal\":{\"name\":\"Advanced Theory and Simulations\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Theory and Simulations\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/adts.202501068\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adts.202501068","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

利用密度泛函理论,研究了锂离子电池(LIBs)用反铁磁性Fe2As2单层材料的阳极性能。这种二维(2D)材料具有强大的动力学和热力学稳定性,以及优异的电极性能。它具有固有的金属特性,具有良好的导电性,活化能势垒为0.32 eV,扩散系数为1.804 cm2 s−1,便于快速充放电。确定相对地层能量,绘制凸壳,进行OCV计算。计算得到的OCV作为锂离子电池负极材料是合理的。此外,理论存储容量高达819.79 mAh g−1,表明它是负极应用的安全和可持续的选择。最佳锂吸附的小体积膨胀进一步支持其作为阳极材料的适用性。总的来说,这些令人印象深刻的发现表明,Fe2As2单层可以作为lib的良好阳极材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two‐Dimensional Antiferromagnetic Fe2As2 as an Anode Material for Rechargeable Li‐Ion Batteries: A DFT Study
Using density functional theory, the anodic performance of the antiferromagnetic Fe2As2 monolayer for lithium‐ion batteries (LIBs) is investigated. This two‐Dimensional (2D) material demonstrates robust dynamical and thermodynamic stability, along with excellent electrode performance. It exhibits inherent metallic properties that contribute to good electrical conductivity, evidenced by a low activation energy barrier of 0.32 eV and a diffusion coefficient of 1.804 cm2 s−1, facilitating a rapid charging and discharging rate. Relative formation energy is determined to plot the convex hull for the OCV calculation. The calculated OCV is reasonable for use as an anode material for a Li‐ion battery. Additionally, the theoretical storage capacity reaches up to 819.79 mAh g−1 indicating that it is a safe and sustainable option for a negative electrode application. The small volume expansion for optimal lithium adsorption further supports its suitability as an anode material. Overall, these impressive findings suggest that the Fe2As2 monolayer could serve as a good anode material for LIBs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Theory and Simulations
Advanced Theory and Simulations Multidisciplinary-Multidisciplinary
CiteScore
5.50
自引率
3.00%
发文量
221
期刊介绍: Advanced Theory and Simulations is an interdisciplinary, international, English-language journal that publishes high-quality scientific results focusing on the development and application of theoretical methods, modeling and simulation approaches in all natural science and medicine areas, including: materials, chemistry, condensed matter physics engineering, energy life science, biology, medicine atmospheric/environmental science, climate science planetary science, astronomy, cosmology method development, numerical methods, statistics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信