{"title":"玻尔兹曼理论中的幽灵效应","authors":"Raffaele Esposito, Yan Guo, Rossana Marra, Lei Wu","doi":"10.1002/cpa.70017","DOIUrl":null,"url":null,"abstract":"Taking place naturally in a gas subject to a given wall temperature distribution, the “ghost effect” exhibits a rare kinetic effect beyond the prediction of classical fluid theory and Fourier law in such a classical problem in physics. As the Knudsen number goes to zero, the finite variation of temperature in the bulk is determined by an infinitesimal, ghost‐like velocity field, created by a given <jats:italic>finite</jats:italic> variation of the tangential wall temperature as predicted by Maxwell's slip boundary condition. Mathematically, such a finite variation leads to the presence of a severe singularity and a Knudsen layer approximation in the fundamental energy estimate. Neither difficulty is within the reach of any existing PDE theory on the steady Boltzmann equation in a general 3D bounded domain. Consequently, in spite of the discovery of such a ghost effect from temperature variation in as early as 1960s, its mathematical validity has been a challenging and intriguing open question, causing confusion and suspicion. We settle this open question in affirmative if the temperature variation is small but finite, by developing a new framework with four major innovations as follows: (1) a key ‐Hodge decomposition and its corresponding local ‐conservation law eliminate the severe bulk singularity, leading to a reduced energy estimate; (2) a surprising gain in via momentum conservation and a dual Stokes solution; (3) the ‐conservation, energy conservation, and a coupled dual Stokes–Poisson solution reduces to an boundary singularity; (4) a crucial construction of ‐cutoff boundary layer eliminates such boundary singularity via new Hardy's and BV estimates.","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":"54 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ghost effect from Boltzmann theory\",\"authors\":\"Raffaele Esposito, Yan Guo, Rossana Marra, Lei Wu\",\"doi\":\"10.1002/cpa.70017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Taking place naturally in a gas subject to a given wall temperature distribution, the “ghost effect” exhibits a rare kinetic effect beyond the prediction of classical fluid theory and Fourier law in such a classical problem in physics. As the Knudsen number goes to zero, the finite variation of temperature in the bulk is determined by an infinitesimal, ghost‐like velocity field, created by a given <jats:italic>finite</jats:italic> variation of the tangential wall temperature as predicted by Maxwell's slip boundary condition. Mathematically, such a finite variation leads to the presence of a severe singularity and a Knudsen layer approximation in the fundamental energy estimate. Neither difficulty is within the reach of any existing PDE theory on the steady Boltzmann equation in a general 3D bounded domain. Consequently, in spite of the discovery of such a ghost effect from temperature variation in as early as 1960s, its mathematical validity has been a challenging and intriguing open question, causing confusion and suspicion. We settle this open question in affirmative if the temperature variation is small but finite, by developing a new framework with four major innovations as follows: (1) a key ‐Hodge decomposition and its corresponding local ‐conservation law eliminate the severe bulk singularity, leading to a reduced energy estimate; (2) a surprising gain in via momentum conservation and a dual Stokes solution; (3) the ‐conservation, energy conservation, and a coupled dual Stokes–Poisson solution reduces to an boundary singularity; (4) a crucial construction of ‐cutoff boundary layer eliminates such boundary singularity via new Hardy's and BV estimates.\",\"PeriodicalId\":10601,\"journal\":{\"name\":\"Communications on Pure and Applied Mathematics\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications on Pure and Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/cpa.70017\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/cpa.70017","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Taking place naturally in a gas subject to a given wall temperature distribution, the “ghost effect” exhibits a rare kinetic effect beyond the prediction of classical fluid theory and Fourier law in such a classical problem in physics. As the Knudsen number goes to zero, the finite variation of temperature in the bulk is determined by an infinitesimal, ghost‐like velocity field, created by a given finite variation of the tangential wall temperature as predicted by Maxwell's slip boundary condition. Mathematically, such a finite variation leads to the presence of a severe singularity and a Knudsen layer approximation in the fundamental energy estimate. Neither difficulty is within the reach of any existing PDE theory on the steady Boltzmann equation in a general 3D bounded domain. Consequently, in spite of the discovery of such a ghost effect from temperature variation in as early as 1960s, its mathematical validity has been a challenging and intriguing open question, causing confusion and suspicion. We settle this open question in affirmative if the temperature variation is small but finite, by developing a new framework with four major innovations as follows: (1) a key ‐Hodge decomposition and its corresponding local ‐conservation law eliminate the severe bulk singularity, leading to a reduced energy estimate; (2) a surprising gain in via momentum conservation and a dual Stokes solution; (3) the ‐conservation, energy conservation, and a coupled dual Stokes–Poisson solution reduces to an boundary singularity; (4) a crucial construction of ‐cutoff boundary layer eliminates such boundary singularity via new Hardy's and BV estimates.