RadGLO:胶质瘤放射学特征分析和预后建模的互动平台。

IF 6.8 1区 医学 Q1 ONCOLOGY
Kavita Kundal, K Divya Rani, Vinodini D, Neeraj Kumar, Rahul Kumar
{"title":"RadGLO:胶质瘤放射学特征分析和预后建模的互动平台。","authors":"Kavita Kundal, K Divya Rani, Vinodini D, Neeraj Kumar, Rahul Kumar","doi":"10.1038/s41698-025-01124-z","DOIUrl":null,"url":null,"abstract":"<p><p>Radiomic features, quantitative descriptors of tumor shape, texture, and intensity derived from MRI serve as powerful non-invasive biomarkers for glioma characterization and prognosis. We present Radiology of Glioma (RadGLO), an interactive platform that leverages these features across multi-institutional datasets (TCGA, UCSF, UPENN) to support grade-wise analysis, gene correlation, and survival prediction. RadGLO integrates two in-house developed modules, RaSPr for risk stratification and TumorVQ for region-specific tumor volume quantification, which also supports user-uploaded MRI data. By enabling personalized prognosis and aiding treatment planning, RadGLO offers a valuable resource that is openly accessible at https://project.iith.ac.in/cgntlab/radglo/ .</p>","PeriodicalId":19433,"journal":{"name":"NPJ Precision Oncology","volume":"9 1","pages":"323"},"PeriodicalIF":6.8000,"publicationDate":"2025-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12521371/pdf/","citationCount":"0","resultStr":"{\"title\":\"RadGLO: an interactive platform for radiomic feature analysis and prognostic modeling in glioma.\",\"authors\":\"Kavita Kundal, K Divya Rani, Vinodini D, Neeraj Kumar, Rahul Kumar\",\"doi\":\"10.1038/s41698-025-01124-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Radiomic features, quantitative descriptors of tumor shape, texture, and intensity derived from MRI serve as powerful non-invasive biomarkers for glioma characterization and prognosis. We present Radiology of Glioma (RadGLO), an interactive platform that leverages these features across multi-institutional datasets (TCGA, UCSF, UPENN) to support grade-wise analysis, gene correlation, and survival prediction. RadGLO integrates two in-house developed modules, RaSPr for risk stratification and TumorVQ for region-specific tumor volume quantification, which also supports user-uploaded MRI data. By enabling personalized prognosis and aiding treatment planning, RadGLO offers a valuable resource that is openly accessible at https://project.iith.ac.in/cgntlab/radglo/ .</p>\",\"PeriodicalId\":19433,\"journal\":{\"name\":\"NPJ Precision Oncology\",\"volume\":\"9 1\",\"pages\":\"323\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12521371/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NPJ Precision Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41698-025-01124-z\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Precision Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41698-025-01124-z","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

来自MRI的放射学特征、肿瘤形状、质地和强度的定量描述符可作为胶质瘤表征和预后的强大非侵入性生物标志物。我们提出了神经胶质瘤放射学(RadGLO),这是一个交互式平台,利用多机构数据集(TCGA, UCSF, UPENN)的这些特征来支持分级分析,基因相关性和生存预测。RadGLO集成了两个内部开发的模块,用于风险分层的RaSPr和用于特定区域肿瘤体积量化的TumorVQ,还支持用户上传MRI数据。通过实现个性化预后和辅助治疗计划,RadGLO提供了一个有价值的资源,可以在https://project.iith.ac.in/cgntlab/radglo/上公开访问。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RadGLO: an interactive platform for radiomic feature analysis and prognostic modeling in glioma.

Radiomic features, quantitative descriptors of tumor shape, texture, and intensity derived from MRI serve as powerful non-invasive biomarkers for glioma characterization and prognosis. We present Radiology of Glioma (RadGLO), an interactive platform that leverages these features across multi-institutional datasets (TCGA, UCSF, UPENN) to support grade-wise analysis, gene correlation, and survival prediction. RadGLO integrates two in-house developed modules, RaSPr for risk stratification and TumorVQ for region-specific tumor volume quantification, which also supports user-uploaded MRI data. By enabling personalized prognosis and aiding treatment planning, RadGLO offers a valuable resource that is openly accessible at https://project.iith.ac.in/cgntlab/radglo/ .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.90
自引率
1.30%
发文量
87
审稿时长
18 weeks
期刊介绍: Online-only and open access, npj Precision Oncology is an international, peer-reviewed journal dedicated to showcasing cutting-edge scientific research in all facets of precision oncology, spanning from fundamental science to translational applications and clinical medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信