María Moscardó García, Atte Aalto, Arthur N Montanari, Alexander Skupin, Jorge Gonçalves
{"title":"基于时间序列数据的多组网络推理。","authors":"María Moscardó García, Atte Aalto, Arthur N Montanari, Alexander Skupin, Jorge Gonçalves","doi":"10.1038/s41540-025-00591-1","DOIUrl":null,"url":null,"abstract":"<p><p>Biological phenotypes emerge from complex interactions across molecular layers. Yet, data-driven approaches to infer these regulatory networks have primarily focused on single-omic studies, overlooking inter-layer regulatory relationships. To address these limitations, we developed MINIE, a computational method that integrates multi-omic data from bulk metabolomics and single-cell transcriptomics through a Bayesian regression approach that explicitly models the timescale separation between molecular layers. We validate the method on both simulated datasets and experimental Parkinson's disease data. MINIE exhibits accurate and robust predictive performance across and within omic layers, including curated multi-omic networks and the lac operon. Benchmarking demonstrated significant improvements over state-of-the-art methods while ranking among the top performers in comprehensive single-cell network inference analysis. The integration of regulatory dynamics across molecular layers and temporal scales provides a powerful tool for comprehensive multi-omic network inference.</p>","PeriodicalId":19345,"journal":{"name":"NPJ Systems Biology and Applications","volume":"11 1","pages":"114"},"PeriodicalIF":3.5000,"publicationDate":"2025-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-omic network inference from time-series data.\",\"authors\":\"María Moscardó García, Atte Aalto, Arthur N Montanari, Alexander Skupin, Jorge Gonçalves\",\"doi\":\"10.1038/s41540-025-00591-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Biological phenotypes emerge from complex interactions across molecular layers. Yet, data-driven approaches to infer these regulatory networks have primarily focused on single-omic studies, overlooking inter-layer regulatory relationships. To address these limitations, we developed MINIE, a computational method that integrates multi-omic data from bulk metabolomics and single-cell transcriptomics through a Bayesian regression approach that explicitly models the timescale separation between molecular layers. We validate the method on both simulated datasets and experimental Parkinson's disease data. MINIE exhibits accurate and robust predictive performance across and within omic layers, including curated multi-omic networks and the lac operon. Benchmarking demonstrated significant improvements over state-of-the-art methods while ranking among the top performers in comprehensive single-cell network inference analysis. The integration of regulatory dynamics across molecular layers and temporal scales provides a powerful tool for comprehensive multi-omic network inference.</p>\",\"PeriodicalId\":19345,\"journal\":{\"name\":\"NPJ Systems Biology and Applications\",\"volume\":\"11 1\",\"pages\":\"114\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NPJ Systems Biology and Applications\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41540-025-00591-1\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Systems Biology and Applications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41540-025-00591-1","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Multi-omic network inference from time-series data.
Biological phenotypes emerge from complex interactions across molecular layers. Yet, data-driven approaches to infer these regulatory networks have primarily focused on single-omic studies, overlooking inter-layer regulatory relationships. To address these limitations, we developed MINIE, a computational method that integrates multi-omic data from bulk metabolomics and single-cell transcriptomics through a Bayesian regression approach that explicitly models the timescale separation between molecular layers. We validate the method on both simulated datasets and experimental Parkinson's disease data. MINIE exhibits accurate and robust predictive performance across and within omic layers, including curated multi-omic networks and the lac operon. Benchmarking demonstrated significant improvements over state-of-the-art methods while ranking among the top performers in comprehensive single-cell network inference analysis. The integration of regulatory dynamics across molecular layers and temporal scales provides a powerful tool for comprehensive multi-omic network inference.
期刊介绍:
npj Systems Biology and Applications is an online Open Access journal dedicated to publishing the premier research that takes a systems-oriented approach. The journal aims to provide a forum for the presentation of articles that help define this nascent field, as well as those that apply the advances to wider fields. We encourage studies that integrate, or aid the integration of, data, analyses and insight from molecules to organisms and broader systems. Important areas of interest include not only fundamental biological systems and drug discovery, but also applications to health, medical practice and implementation, big data, biotechnology, food science, human behaviour, broader biological systems and industrial applications of systems biology.
We encourage all approaches, including network biology, application of control theory to biological systems, computational modelling and analysis, comprehensive and/or high-content measurements, theoretical, analytical and computational studies of system-level properties of biological systems and computational/software/data platforms enabling such studies.