{"title":"合成苯并恶嗪二聚体衍生物靶向c-Myc抑制结直肠癌进展。","authors":"Nicharat Sriratanasak, Bodee Nutho, Worawat Wattanathana, Narumon Phaonakrop, Bunnatut Panasawatwong, Katharina Erlenbach-Wuensch, Sittiruk Roytrakul, Regine Schneider-Stock, Pithi Chanvorachote","doi":"10.1002/1878-0261.70127","DOIUrl":null,"url":null,"abstract":"<p><p>The c-Myc protein is a well-known oncoprotein that plays a crucial role in regulating cell growth, proliferation, and differentiation. The overexpression or dysregulation of c-Myc is commonly associated with tumorigenesis in several cancers, including colorectal cancer (CRC). c-Myc forms a heterodimer with its partner MAX to activate the expression of various genes. Here, we synthesized a novel c-Myc-targeting small molecule, 2,2'-((cyclohexylazanedyl)bis(methylene))bis(4-ethylphenol), or ECD, and demonstrate ECD's anticancer activity via interference with the c-Myc/MAX dimer to promote c-Myc degradation in CRC cells in vitro, in silico, and in vivo. This study revealed the activity of ECD toward CRC cells as a c-Myc inhibitor. Computer-aided analysis revealed that the effect of ECD was mediated through disturbance of the c-Myc/MAX complex. Moreover, ECD exhibited cytotoxic activity by inducing DNA damage, leading to apoptotic cell death. This DNA damage-inducing property was also confirmed by whole-proteome profiling of HT29 cells after ECD treatment. In the chick embryo chorioallantoic membrane (CAM) xenograft assay, we demonstrated a remarkable inhibition of the tumorigenic activity upon ECD exposure. In summary, we identified ECD as a novel potent compound targeting the oncoprotein c-Myc that may offer new opportunities for CRC treatment.</p>","PeriodicalId":18764,"journal":{"name":"Molecular Oncology","volume":" ","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A synthetic benzoxazine dimer derivative targets c-Myc to inhibit colorectal cancer progression.\",\"authors\":\"Nicharat Sriratanasak, Bodee Nutho, Worawat Wattanathana, Narumon Phaonakrop, Bunnatut Panasawatwong, Katharina Erlenbach-Wuensch, Sittiruk Roytrakul, Regine Schneider-Stock, Pithi Chanvorachote\",\"doi\":\"10.1002/1878-0261.70127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The c-Myc protein is a well-known oncoprotein that plays a crucial role in regulating cell growth, proliferation, and differentiation. The overexpression or dysregulation of c-Myc is commonly associated with tumorigenesis in several cancers, including colorectal cancer (CRC). c-Myc forms a heterodimer with its partner MAX to activate the expression of various genes. Here, we synthesized a novel c-Myc-targeting small molecule, 2,2'-((cyclohexylazanedyl)bis(methylene))bis(4-ethylphenol), or ECD, and demonstrate ECD's anticancer activity via interference with the c-Myc/MAX dimer to promote c-Myc degradation in CRC cells in vitro, in silico, and in vivo. This study revealed the activity of ECD toward CRC cells as a c-Myc inhibitor. Computer-aided analysis revealed that the effect of ECD was mediated through disturbance of the c-Myc/MAX complex. Moreover, ECD exhibited cytotoxic activity by inducing DNA damage, leading to apoptotic cell death. This DNA damage-inducing property was also confirmed by whole-proteome profiling of HT29 cells after ECD treatment. In the chick embryo chorioallantoic membrane (CAM) xenograft assay, we demonstrated a remarkable inhibition of the tumorigenic activity upon ECD exposure. In summary, we identified ECD as a novel potent compound targeting the oncoprotein c-Myc that may offer new opportunities for CRC treatment.</p>\",\"PeriodicalId\":18764,\"journal\":{\"name\":\"Molecular Oncology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/1878-0261.70127\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/1878-0261.70127","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
A synthetic benzoxazine dimer derivative targets c-Myc to inhibit colorectal cancer progression.
The c-Myc protein is a well-known oncoprotein that plays a crucial role in regulating cell growth, proliferation, and differentiation. The overexpression or dysregulation of c-Myc is commonly associated with tumorigenesis in several cancers, including colorectal cancer (CRC). c-Myc forms a heterodimer with its partner MAX to activate the expression of various genes. Here, we synthesized a novel c-Myc-targeting small molecule, 2,2'-((cyclohexylazanedyl)bis(methylene))bis(4-ethylphenol), or ECD, and demonstrate ECD's anticancer activity via interference with the c-Myc/MAX dimer to promote c-Myc degradation in CRC cells in vitro, in silico, and in vivo. This study revealed the activity of ECD toward CRC cells as a c-Myc inhibitor. Computer-aided analysis revealed that the effect of ECD was mediated through disturbance of the c-Myc/MAX complex. Moreover, ECD exhibited cytotoxic activity by inducing DNA damage, leading to apoptotic cell death. This DNA damage-inducing property was also confirmed by whole-proteome profiling of HT29 cells after ECD treatment. In the chick embryo chorioallantoic membrane (CAM) xenograft assay, we demonstrated a remarkable inhibition of the tumorigenic activity upon ECD exposure. In summary, we identified ECD as a novel potent compound targeting the oncoprotein c-Myc that may offer new opportunities for CRC treatment.
Molecular OncologyBiochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
11.80
自引率
1.50%
发文量
203
审稿时长
10 weeks
期刊介绍:
Molecular Oncology highlights new discoveries, approaches, and technical developments, in basic, clinical and discovery-driven translational cancer research. It publishes research articles, reviews (by invitation only), and timely science policy articles.
The journal is now fully Open Access with all articles published over the past 10 years freely available.