三维星图径向成像的变密度和各向异性视场。

IF 2.5 4区 医学 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Joao Tourais, Guruprasad Krishnamoorthy, Jouke Smink, Marcel Breeuwer, Marc Kouwenhoven
{"title":"三维星图径向成像的变密度和各向异性视场。","authors":"Joao Tourais, Guruprasad Krishnamoorthy, Jouke Smink, Marcel Breeuwer, Marc Kouwenhoven","doi":"10.1007/s10334-025-01283-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To develop a non-iterative method for applying elliptical field-of-view (FOV) to radial imaging and evaluate it for Stack-Of-Stars (SOS) with variable radial density in the <math><msub><mi>k</mi> <mi>z</mi></msub> </math> direction.</p><p><strong>Materials and methods: </strong>New analytic expressions were derived to compute the radial profile angles for an elliptical FOV with and without golden angle sampling. With a major-to-minor-axis FOV ratio of 1:0.5, anisotropic FOV and variable density SOS were evaluated, using point spread function analysis, phantom imaging, and in vivo pelvic imaging.</p><p><strong>Results: </strong>Compared with conventional SOS, elliptical density in <math><msub><mi>k</mi> <mi>z</mi></msub> </math> reduced scan time by 20%, while maintaining similar levels of radial aliasing artifacts. Anisotropic FOV reduced scan time by 31%, resulting in similar levels of radial aliasing artifacts at low undersampling for objects with matching in-plane anisotropy. Combining both techniques resulted in a 45% scan time reduction. Alternatively, when compared to conventional SOS using identical scan time, variable density and anisotropic FOV both displayed a lower level of radial aliasing artifacts, although for anisotropic FOV this effect was less pronounced at higher undersampling.</p><p><strong>Discussion: </strong>Variable density and anisotropic FOV can reduce scan time and/or reduce aliasing artifacts for SOS. The new analytical expressions for elliptical FOV will facilitate future studies on anisotropic FOV radial imaging.</p>","PeriodicalId":18067,"journal":{"name":"Magnetic Resonance Materials in Physics, Biology and Medicine","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Variable density and anisotropic field-of-view for 3D Stack-of-Stars radial imaging.\",\"authors\":\"Joao Tourais, Guruprasad Krishnamoorthy, Jouke Smink, Marcel Breeuwer, Marc Kouwenhoven\",\"doi\":\"10.1007/s10334-025-01283-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>To develop a non-iterative method for applying elliptical field-of-view (FOV) to radial imaging and evaluate it for Stack-Of-Stars (SOS) with variable radial density in the <math><msub><mi>k</mi> <mi>z</mi></msub> </math> direction.</p><p><strong>Materials and methods: </strong>New analytic expressions were derived to compute the radial profile angles for an elliptical FOV with and without golden angle sampling. With a major-to-minor-axis FOV ratio of 1:0.5, anisotropic FOV and variable density SOS were evaluated, using point spread function analysis, phantom imaging, and in vivo pelvic imaging.</p><p><strong>Results: </strong>Compared with conventional SOS, elliptical density in <math><msub><mi>k</mi> <mi>z</mi></msub> </math> reduced scan time by 20%, while maintaining similar levels of radial aliasing artifacts. Anisotropic FOV reduced scan time by 31%, resulting in similar levels of radial aliasing artifacts at low undersampling for objects with matching in-plane anisotropy. Combining both techniques resulted in a 45% scan time reduction. Alternatively, when compared to conventional SOS using identical scan time, variable density and anisotropic FOV both displayed a lower level of radial aliasing artifacts, although for anisotropic FOV this effect was less pronounced at higher undersampling.</p><p><strong>Discussion: </strong>Variable density and anisotropic FOV can reduce scan time and/or reduce aliasing artifacts for SOS. The new analytical expressions for elliptical FOV will facilitate future studies on anisotropic FOV radial imaging.</p>\",\"PeriodicalId\":18067,\"journal\":{\"name\":\"Magnetic Resonance Materials in Physics, Biology and Medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magnetic Resonance Materials in Physics, Biology and Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10334-025-01283-x\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance Materials in Physics, Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10334-025-01283-x","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

目的:建立椭圆视场(FOV)径向成像的非迭代方法,并评价其在kz方向径向密度变的叠星(SOS)成像中的应用效果。材料与方法:推导了椭圆视场在有和没有黄金角采样时径向轮廓角的解析表达式。在大、小轴视场比为1:0.5的情况下,利用点扩散函数分析、幻像成像和体内盆腔成像对各向异性视场和变密度SOS进行评估。结果:与传统的SOS相比,k z的椭圆密度使扫描时间缩短了20%,同时保持了相似水平的径向混叠伪影。各向异性视场减少了31%的扫描时间,对于具有匹配的平面内各向异性的物体,在低欠采样下产生相似水平的径向混叠伪影。结合这两种技术,扫描时间减少了45%。另外,与使用相同扫描时间的传统SOS相比,可变密度和各向异性视场都显示出较低水平的径向混叠伪影,尽管各向异性视场在高欠采样时这种影响不太明显。讨论:可变密度和各向异性视场可以减少扫描时间和/或减少SOS的混叠伪影。新的椭圆视场解析表达式将为今后各向异性视场径向成像的研究奠定基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Variable density and anisotropic field-of-view for 3D Stack-of-Stars radial imaging.

Objective: To develop a non-iterative method for applying elliptical field-of-view (FOV) to radial imaging and evaluate it for Stack-Of-Stars (SOS) with variable radial density in the k z direction.

Materials and methods: New analytic expressions were derived to compute the radial profile angles for an elliptical FOV with and without golden angle sampling. With a major-to-minor-axis FOV ratio of 1:0.5, anisotropic FOV and variable density SOS were evaluated, using point spread function analysis, phantom imaging, and in vivo pelvic imaging.

Results: Compared with conventional SOS, elliptical density in k z reduced scan time by 20%, while maintaining similar levels of radial aliasing artifacts. Anisotropic FOV reduced scan time by 31%, resulting in similar levels of radial aliasing artifacts at low undersampling for objects with matching in-plane anisotropy. Combining both techniques resulted in a 45% scan time reduction. Alternatively, when compared to conventional SOS using identical scan time, variable density and anisotropic FOV both displayed a lower level of radial aliasing artifacts, although for anisotropic FOV this effect was less pronounced at higher undersampling.

Discussion: Variable density and anisotropic FOV can reduce scan time and/or reduce aliasing artifacts for SOS. The new analytical expressions for elliptical FOV will facilitate future studies on anisotropic FOV radial imaging.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.60
自引率
0.00%
发文量
58
审稿时长
>12 weeks
期刊介绍: MAGMA is a multidisciplinary international journal devoted to the publication of articles on all aspects of magnetic resonance techniques and their applications in medicine and biology. MAGMA currently publishes research papers, reviews, letters to the editor, and commentaries, six times a year. The subject areas covered by MAGMA include: advances in materials, hardware and software in magnetic resonance technology, new developments and results in research and practical applications of magnetic resonance imaging and spectroscopy related to biology and medicine, study of animal models and intact cells using magnetic resonance, reports of clinical trials on humans and clinical validation of magnetic resonance protocols.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信