基于动态令牌采样的高效无人机变压器跟踪

IF 8 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Guocai Du , Peiyong Zhou , Nurbiya Yadikar , Alimjan Aysa , Kurban Ubul
{"title":"基于动态令牌采样的高效无人机变压器跟踪","authors":"Guocai Du ,&nbsp;Peiyong Zhou ,&nbsp;Nurbiya Yadikar ,&nbsp;Alimjan Aysa ,&nbsp;Kurban Ubul","doi":"10.1016/j.engappai.2025.112610","DOIUrl":null,"url":null,"abstract":"<div><div>The existing Transformer based unmanned aerial vehicles tracking methods suffer from issues such as token redundancy and lack of information. In order to solve the above problems, we propose a novel dynamic token sampling for an efficient unmanned aerial vehicle transformer tracking framework. Unlike previous transformer-based tracking methods, we avoids the need for complex head networks like classification and regression. We design encoders that consist of three key components: Dynamic Position Embedding, Dynamic Token Sampler, and Convolutional Feed-Forward Network. This module enhances visual representation by scoring and dynamically sampling tokens, allowing for a flexible token count that adapts to target changes within each frame. We utilize a simple image-sequence contrastive loss as the loss function. Our approach not only simplifies the tracking framework but also achieves state-of-the-art performance at real-time running speeds across seven challenging datasets.</div></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":"162 ","pages":"Article 112610"},"PeriodicalIF":8.0000,"publicationDate":"2025-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic token sampling for efficient unmanned aerial vehicles transformer tracking\",\"authors\":\"Guocai Du ,&nbsp;Peiyong Zhou ,&nbsp;Nurbiya Yadikar ,&nbsp;Alimjan Aysa ,&nbsp;Kurban Ubul\",\"doi\":\"10.1016/j.engappai.2025.112610\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The existing Transformer based unmanned aerial vehicles tracking methods suffer from issues such as token redundancy and lack of information. In order to solve the above problems, we propose a novel dynamic token sampling for an efficient unmanned aerial vehicle transformer tracking framework. Unlike previous transformer-based tracking methods, we avoids the need for complex head networks like classification and regression. We design encoders that consist of three key components: Dynamic Position Embedding, Dynamic Token Sampler, and Convolutional Feed-Forward Network. This module enhances visual representation by scoring and dynamically sampling tokens, allowing for a flexible token count that adapts to target changes within each frame. We utilize a simple image-sequence contrastive loss as the loss function. Our approach not only simplifies the tracking framework but also achieves state-of-the-art performance at real-time running speeds across seven challenging datasets.</div></div>\",\"PeriodicalId\":50523,\"journal\":{\"name\":\"Engineering Applications of Artificial Intelligence\",\"volume\":\"162 \",\"pages\":\"Article 112610\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2025-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Applications of Artificial Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0952197625026417\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952197625026417","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

现有的基于Transformer的无人机跟踪方法存在令牌冗余和信息缺乏等问题。为了解决上述问题,我们提出了一种新的动态令牌采样方法,用于高效的无人机变压器跟踪框架。与以前基于变压器的跟踪方法不同,我们避免了对复杂的头部网络的需要,如分类和回归。我们设计的编码器由三个关键组件组成:动态位置嵌入,动态令牌采样器和卷积前馈网络。该模块通过评分和动态采样令牌来增强视觉表现,允许灵活的令牌计数,以适应每帧内的目标变化。我们利用一个简单的图像序列对比损失作为损失函数。我们的方法不仅简化了跟踪框架,而且在七个具有挑战性的数据集的实时运行速度下实现了最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic token sampling for efficient unmanned aerial vehicles transformer tracking
The existing Transformer based unmanned aerial vehicles tracking methods suffer from issues such as token redundancy and lack of information. In order to solve the above problems, we propose a novel dynamic token sampling for an efficient unmanned aerial vehicle transformer tracking framework. Unlike previous transformer-based tracking methods, we avoids the need for complex head networks like classification and regression. We design encoders that consist of three key components: Dynamic Position Embedding, Dynamic Token Sampler, and Convolutional Feed-Forward Network. This module enhances visual representation by scoring and dynamically sampling tokens, allowing for a flexible token count that adapts to target changes within each frame. We utilize a simple image-sequence contrastive loss as the loss function. Our approach not only simplifies the tracking framework but also achieves state-of-the-art performance at real-time running speeds across seven challenging datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Engineering Applications of Artificial Intelligence
Engineering Applications of Artificial Intelligence 工程技术-工程:电子与电气
CiteScore
9.60
自引率
10.00%
发文量
505
审稿时长
68 days
期刊介绍: Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信