Co9S8中硫空位演化过程中d-p轨道杂化的动态调谐

IF 10.3 4区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR
Weilong Liu , Jipeng Dong , Luyao Zhang , Ning Li , Yangqin Gao , Lei Ge
{"title":"Co9S8中硫空位演化过程中d-p轨道杂化的动态调谐","authors":"Weilong Liu ,&nbsp;Jipeng Dong ,&nbsp;Luyao Zhang ,&nbsp;Ning Li ,&nbsp;Yangqin Gao ,&nbsp;Lei Ge","doi":"10.1016/j.cjsc.2025.100661","DOIUrl":null,"url":null,"abstract":"<div><div>Defect engineering significantly enhances electrocatalytic performance by modulating electronic structures and interfacial coordination, yet the dynamic correlation between defect evolution and catalytic activity during reactions remains unclear. Herein, density functional theory (DFT) calculations first reveal the modulation of sulfur vacancy concentrations on Co<sub>9</sub>S<sub>8</sub> electronic structures, predicting that optimized vacancy concentrations enable highly efficient electrocatalytic water splitting. Experimentally fabricated Co<sub>9</sub>S<sub>8</sub> with appropriate sulfur vacancies exhibits superior bifunctional activity (HER: 164 mV@<em>η</em><sub>10</sub>; OER: 297 mV@<em>η</em><sub>100</sub>). The MCS-assembled overall water splitting system demonstrates stable operation at 1.57 V (10 mA cm<sup>−2</sup>) for over 60 h. Experimental studies illustrate that sulfur vacancies preferentially adsorb OH<sup>−</sup> during reactions, inducing the formation of CoOOH active phases. DFT analysis further indicates that OH<sup>−</sup> adsorption weakens <em>d-p</em> orbital hybridization, optimizing hydrogen/oxygen intermediate adsorption energy barriers and ultimately enhancing catalytic performance. This work establishes novel paradigms for systematic development of catalysts through synergistic analysis of defect dynamics, electronic structures and catalytic performance.</div></div>","PeriodicalId":10151,"journal":{"name":"结构化学","volume":"44 9","pages":"Article 100661"},"PeriodicalIF":10.3000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic tuning of d-p orbital hybridization during sulfur vacancy evolution in Co9S8 toward efficient overall water splitting\",\"authors\":\"Weilong Liu ,&nbsp;Jipeng Dong ,&nbsp;Luyao Zhang ,&nbsp;Ning Li ,&nbsp;Yangqin Gao ,&nbsp;Lei Ge\",\"doi\":\"10.1016/j.cjsc.2025.100661\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Defect engineering significantly enhances electrocatalytic performance by modulating electronic structures and interfacial coordination, yet the dynamic correlation between defect evolution and catalytic activity during reactions remains unclear. Herein, density functional theory (DFT) calculations first reveal the modulation of sulfur vacancy concentrations on Co<sub>9</sub>S<sub>8</sub> electronic structures, predicting that optimized vacancy concentrations enable highly efficient electrocatalytic water splitting. Experimentally fabricated Co<sub>9</sub>S<sub>8</sub> with appropriate sulfur vacancies exhibits superior bifunctional activity (HER: 164 mV@<em>η</em><sub>10</sub>; OER: 297 mV@<em>η</em><sub>100</sub>). The MCS-assembled overall water splitting system demonstrates stable operation at 1.57 V (10 mA cm<sup>−2</sup>) for over 60 h. Experimental studies illustrate that sulfur vacancies preferentially adsorb OH<sup>−</sup> during reactions, inducing the formation of CoOOH active phases. DFT analysis further indicates that OH<sup>−</sup> adsorption weakens <em>d-p</em> orbital hybridization, optimizing hydrogen/oxygen intermediate adsorption energy barriers and ultimately enhancing catalytic performance. This work establishes novel paradigms for systematic development of catalysts through synergistic analysis of defect dynamics, electronic structures and catalytic performance.</div></div>\",\"PeriodicalId\":10151,\"journal\":{\"name\":\"结构化学\",\"volume\":\"44 9\",\"pages\":\"Article 100661\"},\"PeriodicalIF\":10.3000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"结构化学\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0254586125001515\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"结构化学","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0254586125001515","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

缺陷工程通过调节电子结构和界面配位显著提高电催化性能,但反应过程中缺陷演化与催化活性之间的动态关系尚不清楚。在此,密度泛函理论(DFT)计算首次揭示了硫空位浓度对Co9S8电子结构的调制,预测优化的空位浓度可以实现高效的电催化水分解。实验制备的具有适当硫空位的Co9S8具有优异的双功能活性(HER: 164 mV@η10; OER: 297 mV@η100)。mcs组装的整体水分解系统在1.57 V (10 mA cm−2)下稳定运行超过60小时。实验研究表明,硫空位在反应过程中优先吸附OH -,诱导CoOOH活性相的形成。DFT分析进一步表明,OH -吸附减弱了d-p轨道杂化,优化了氢/氧中间体吸附能垒,最终提高了催化性能。这项工作通过对缺陷动力学、电子结构和催化性能的协同分析,为催化剂的系统开发建立了新的范例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Dynamic tuning of d-p orbital hybridization during sulfur vacancy evolution in Co9S8 toward efficient overall water splitting

Dynamic tuning of d-p orbital hybridization during sulfur vacancy evolution in Co9S8 toward efficient overall water splitting
Defect engineering significantly enhances electrocatalytic performance by modulating electronic structures and interfacial coordination, yet the dynamic correlation between defect evolution and catalytic activity during reactions remains unclear. Herein, density functional theory (DFT) calculations first reveal the modulation of sulfur vacancy concentrations on Co9S8 electronic structures, predicting that optimized vacancy concentrations enable highly efficient electrocatalytic water splitting. Experimentally fabricated Co9S8 with appropriate sulfur vacancies exhibits superior bifunctional activity (HER: 164 mV@η10; OER: 297 mV@η100). The MCS-assembled overall water splitting system demonstrates stable operation at 1.57 V (10 mA cm−2) for over 60 h. Experimental studies illustrate that sulfur vacancies preferentially adsorb OH during reactions, inducing the formation of CoOOH active phases. DFT analysis further indicates that OH adsorption weakens d-p orbital hybridization, optimizing hydrogen/oxygen intermediate adsorption energy barriers and ultimately enhancing catalytic performance. This work establishes novel paradigms for systematic development of catalysts through synergistic analysis of defect dynamics, electronic structures and catalytic performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
结构化学
结构化学 化学-晶体学
CiteScore
4.70
自引率
22.70%
发文量
5334
审稿时长
13 days
期刊介绍: Chinese Journal of Structural Chemistry “JIEGOU HUAXUE ”, an academic journal consisting of reviews, articles, communications and notes, provides a forum for the reporting and discussion of current novel research achievements in the fields of structural chemistry, crystallography, spectroscopy, quantum chemistry, pharmaceutical chemistry, biochemistry, material science, etc. Structural Chemistry has been indexed by SCI, CA, and some other prestigious publications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信